Skip to main content
Log in

Intraspecific competitive interactions rapidly evolve via spontaneous mutations

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Using a mechanistic spatially explicit trait-based neighborhood-model, we quantify the impact of mutations on intraspecific spatial interactions to better understand mechanisms underlying the maintenance of genetic variation and the potential effects of these evolved interactions on the population dynamics of Arabidopsis thaliana. We use 100 twenty-fifth generation mutation accumulation (MA) lines (genotypes) derived from one founder genotype to study mutational effects on neighbor responses in a field experiment. We created individual-based maps (15,000 individuals), including phenotypic variation, to quantify mutational effects within genotypes versus between genotypes on reproduction and survival. At small-scale (within 80 cm of the focal plant), survival is enhanced but seed-set is decreased when a genotype is surrounded by different genotypes. At large-scale (within 200 cm of the focal plant), seed set is facilitated by different genotypes while the same genotype has either no effect or negative effects. The direction of the interactions among MA lines suggests that at small scale these interactions may contribute to the maintenance of genetic variation and at large scale contribute to the survival of the population. This may suggest, that, mutations potentially have immediate effects on population and community dynamics by influencing the outcome of competitive and faciliatory interactions among conspecifics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adler PB, Janneke HRL, Levine JM (2007) A niche for neutrality. Ecol Lett 10:95–104

    Article  PubMed  Google Scholar 

  • Agrawal AA, Hastings AP, Johnson MTJ, Maron JL, Salminen J-P (2012) Insect herbivores drive real-time ecological and evolutionary change in plant populations. Science 338:113–116

    Article  PubMed  CAS  Google Scholar 

  • Åkesson A, Curtsdotter A, Eklöf A et al (2021) The importance of species interactions in eco-evolutionary community dynamics under climate change. Nat Commun 12:4759. https://doi.org/10.1038/s41467-021-24977-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Antonovics J (1976) The nature of limits to natural selection. Ann Mo Bot Gard 63:224–247

    Article  Google Scholar 

  • Bailey JK et al (2009) From genes to ecosystems: a synthesis of the effects of plant genetic factors across levels of organization. Phil Trans R Soc B 364:1607–1616. https://doi.org/10.1098/rstb.2008.0336

    Article  PubMed  PubMed Central  Google Scholar 

  • Baron E, Richirt J, Villoutreix R, Amsellem L, Roux F, Bennett A (2015) The genetics of intra- and interspecific competitive response and effect in a local population of an annual plant species. Funct Ecol 29:1361–1370

    Article  Google Scholar 

  • Barrett RD, Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 23(1):38–44. https://doi.org/10.1016/j.tree.2007.09.008

  • Bataillon T (2003) Shaking the ‘deleterious mutations’ dogma? Trends Ecol Evol 18:315–317

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2014) fitting linear mixed-effects models using lme4. arXiv:1406.5823

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M et al (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26:183–192

    Article  PubMed  PubMed Central  Google Scholar 

  • Bossdorf O, Shuja Z, Banta JA (2009) Genotype and maternal environment affect belowground interactions between Arabidopsis thaliana and its competitors. Oikos 118:1541–1551. https://doi.org/10.1111/j.1600-0706.2009.17559.x

    Article  Google Scholar 

  • Ol B, Prati D, Auge H, Schmid B (2004) Reduced competitive ability in an invasive plant. Ecol Lett 7:346–353

    Article  Google Scholar 

  • Burnham and Anderson (2002) Model selection and multimodel inference: a practical information-theoretical approach, 2d edn. Springer-Verlag, New York

    Google Scholar 

  • Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory, 7

  • Cahill FJ, Kembel SW, Gustafson DJ (2005) Differential genetic influences on competitive effect and response in Arabidopsis thaliana. J Ecol 93:958–967. https://doi.org/10.1111/j.1365-2745.2005.01013.x

    Article  Google Scholar 

  • Cahill JF, Elle E, Smith GR, Shore BH (2008) Disruption of a belowground mutualism alters interactions between plants and their floral visitors. Ecology 89:1791–1801

    Article  PubMed  Google Scholar 

  • Camara MD, Pigliucci M (1999) Mutational contributions to genetic variance-covariance matrices: An experimental approach using induced mutations in Arabidopsis thaliana. Evolution 53(6):1692–1703

    PubMed  Google Scholar 

  • Caradus J, Woodfield D (1998) Plant Soil 200:63. https://doi.org/10.1023/A:1004296707631

    Article  CAS  Google Scholar 

  • Carr DE, Dudash MR (1996) Inbreeding depression in two species of Mimulus (Scrophulariaceae) with contrasting mating systems. Am J Bot 83:586–593. https://doi.org/10.1002/j.1537-2197.1996.tb12743.x

    Article  Google Scholar 

  • Clara CM, Santiago D-C, González-Martínez SC, Miguel V, Lorena G-A (2014) Can facilitation influence the spatial genetics of the beneficiary plant population? J Ecol 102:1214–1221

    Article  Google Scholar 

  • Chapin FS III, Autumn K, Pugnaire F (1993) Evolution of suites of traits in response to environmental stress. Am Nat 142:S78–S92

    Article  Google Scholar 

  • Chase JM et al (2002) The interaction between predation and competition: a review and synthesis. Ecol Lett 5:302–315

    Article  Google Scholar 

  • Chave J, Muller-Landau HC, Levin SA (2002) Comparing classical community models: theoretical consequences for patterns of diversity. Am Nat 159:1–23

    Article  PubMed  Google Scholar 

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366

    Article  Google Scholar 

  • Clark JS (2010) Individuals and the variation needed for high species diversity in forest trees. Science 327:1129–1132

    Article  PubMed  CAS  Google Scholar 

  • Colwell RK, Rangel TF (2009) Hutchinson’s duality: the once and future niche. PNAS 106:19651–19658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Connell J (1980) Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35(2):131–138. https://doi.org/10.2307/3544421

    Article  Google Scholar 

  • Damgaard C (2004) Inference from plant competition experiments: the effect of spatial covariance. Oikos 107:225–230

    Article  Google Scholar 

  • Delph LF, Kelly JK (2014) On the importance of balancing selection in plants. Publication date 2014/1, New Phytologist, vol 201, pp 45–56

  • Dudley SA, Murphy GP, File AL, Robinson D (2013) Kin recognition and competition in plants. Funct Ecol 27:898–906. https://doi.org/10.1111/1365-2435.12121

    Article  Google Scholar 

  • Ehlers BK, Damgaard CF, Laroche F (2016) Intraspecific genetic variation and species coexistence in plant communities. Biol Let 12:20150853

    Article  Google Scholar 

  • Exposito-Alonso M, Becker C, Schuenemann VJ, Reiter E, Setzer C, Slovak R et al (2018) The rate and potential relevance of new mutations in a colonizing plant lineage. PLoS Genet 14(2):e1007155. https://doi.org/10.1371/journal.pgen.1007155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Falahati-Anbaran M, Lundemo S, Stenøien HK (2014) Seed dispersal in time can counteract the effect of gene flow between natural populations of Arabidopsis thaliana. New Phytol 202:1043–1054. https://doi.org/10.1111/nph.12702

    Article  PubMed  Google Scholar 

  • Fenster CB, Galloway LF, Chao L (1997) Epistasis and its consequences for the evolution of natural populations. Trends Ecol Evol 12:282–286. https://doi.org/10.1016/S0169-5347(97)81027-0

    Article  PubMed  CAS  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon Press. https://doi.org/10.5962/bhl.title.27468

    Article  Google Scholar 

  • Fisher CK, Mehta P (2014) The transition between the niche and neutral regimes in ecology. Proc Natl Acad Sci USA 111:13111–13116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fournier-Level A et al (2016) Predicting the evolutionary dynamics of seasonal adaptation to novel climates in Arabidopsis thaliana. Proc Natl Acad Sci USA 113(20):E2812–E2821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fridley JD, Grime JP (2010) Community and ecosystem effects of intraspecific genetic diversity in grassland microcosms of varying species diversity. Ecology 91:2272–2283

    Article  PubMed  Google Scholar 

  • Fussmann GF, Loreau M, Abrams PA (2007) Eco-evolutionary dynamics of communities and ecosystems. Funct Ecol 21:465–477

    Article  Google Scholar 

  • Genung MA, Schweitzer JA, Úbeda F, Fitzpatrick BM, Pregitzer CC, Felker-Quinn E, Bailey JK (2011) Genetic variation and community change – selection, evolution, and feedbacks. Funct Ecol 25:408–419. https://doi.org/10.1111/j.1365-2435.2010.01797.x

    Article  Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behaviour. I and II J Theor Biol 7:1–52

    Article  CAS  Google Scholar 

  • Hart SP, Schreiber SJ, Levine JM, Coulson T (2016) How variation between individuals affects species coexistence. Ecol Lett 19:825–838. https://doi.org/10.1111/ele.12618

    Article  PubMed  Google Scholar 

  • Hart SP, Freckleton RP, Levine JM, Kroon H (2018) How to quantify competitive ability. J Ecol.

  • Hausmann NJ, Juenger TE, Sen S, Stowe KA, Dawson TE et al (2005) Quantitative trait loci affecting δC13 and response to differential water availability in Arabidopsis thaliana. Evolution 59:81–96

    PubMed  CAS  Google Scholar 

  • Hofhuis H, Hay A (2017) Explosive seed dispersal. New Phytol 216:339–342. https://doi.org/10.1111/nph.14541

    Article  PubMed  Google Scholar 

  • Holt RD (2009) Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. PNAS 106:19659–19665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hubbell SP (2005) Neutral theory in community ecology and the hypothesis of functional equivalence. Funct Ecol 19:166–172

    Article  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • Johnson MTJ, Stinchcombe JR (2007) An emerging synthesis between community ecology and evolutionary biology Trends. Ecol Evol 22:250–257

    Article  Google Scholar 

  • Johnson MTJ, Vellend M, Stinchcombe JR (2009) Evolution in plant populations as a driver of ecological changes in arthropod communities. Philos Trans R Soc Lond B 364:1593–1605

    Article  Google Scholar 

  • Keightley PD, Lynch M (2003) Toward a realistic model of mutations affecting fitness. Evolution 57(3):683–685. http://www.jstor.org/stable/3094781

  • Kerwin et al. (2015) Natural genetic variation in Arabidopsis thaliana defense metabolism genes modulates field fitness | eLife Lens. Last accessed 4 May 2018. https://lens.elifesciences.org/05604/

  • Koch H, Frickel J, Valiadi M, Becks L (2014) Why rapid, adaptive evolution matters for community dynamics. Front Ecol Evol, 2

  • Kubisch A et al (2013) Kin competition as a major driving force for invasions. Am Nat 181:700–706

    Article  PubMed  Google Scholar 

  • Lachmuth S, Henrichmann C, Horn J, Pagel J, Schurr FM, Rafferty N (2018) Neighbourhood effects on plant reproduction: an experimental–analytical framework and its application to the invasive Senecio inaequidens. J Ecol 106:761–773

    Article  Google Scholar 

  • Lankau RA (2011) Rapid evolutionary change and the coexistence of species. Annu Rev Ecol Evol Syst 42:335–354

    Article  Google Scholar 

  • Lankau RA, Strauss SY (2007) Mutual feedbacks maintain both genetic and species diversity in a plant community. Science 317:1561–1563

    Article  PubMed  CAS  Google Scholar 

  • Lankau RA, Wheeler E, Bennett AE, Strauss SY (2010) Plant–soil feedbacks contribute to an intransitive competitive network that promotes both genetic and species diversity. J Ecol 99:176–185

    Article  Google Scholar 

  • Latzel V, Allan E, Bortolini Silveira A, Colot V, Fischer M, Bossdorf O (2013) Epigenetic diversity increases the productivity and stability of plant populations. Nat Commun 4:2875

    Article  PubMed  Google Scholar 

  • Laure G, Zimmermann NE, Levine JM, Adler PRB, Wootton T (2017). The effects of intransitive competition on coexistence. Ecol Lett 20:791–800

  • Levine JM, HilleRisLambers J (2009) The importance of niches for the maintenance of species diversity. Nature 461:254–257

    Article  PubMed  CAS  Google Scholar 

  • Lion S (2018) Theoretical approaches in evolutionary ecology: Environmental feedback as a unifying perspective. Am Nat 191:21–44

    Article  PubMed  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates Inc, Sunderland, MA

    Google Scholar 

  • Masclaux F, Hammond RL, Meunier J, Gouhier-Darimont C, Keller L, Reymond P (2010) Competitive ability not kinship affects growth of Arabidopsis thaliana accessions. New Phytol 185:322–331. https://doi.org/10.1111/j.1469-8137.2009.03057.x

    Article  PubMed  CAS  Google Scholar 

  • Monroe JG, Srikant T, Carbonell-Bejerano P, Becker C, Lensink M, Exposito-Alonso M, Klein M, Hildebrandt J, Neuman M, Kliebenstein D, Weng M-L, Imbert E, Agren ÅJ, Rutter MT, Fenster CB, Weigel D (2020). Mutation bias reflects natural selection in Arabidopsis thaliana. bioRxiv 2020.06.17.156752. Nature in press. Doi: https://doi.org/10.1101/2020.06.17.156752

  • Mukai T (1964) The Genetic structure of natural populations of drosophila melanogaster. I. spontaneous mutation rate of polygenes controlling viability. Genetics 50:1–19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nei M (2013) Mutation-driven evolution. Oxford University Press

    Google Scholar 

  • Nottebrock H, Schmid B, Mayer K, Devaux C, Esler KJ, Böhning-Gaese K et al (2017a) Sugar landscapes and pollinator-mediated interactions in plant communities. Ecography 40:1129–1138

    Article  Google Scholar 

  • Nottebrock H, Schmid B, Treurnicht M, Pagel J, Esler KJ, Böhning‐Gaese K et al. (2017b). Coexistence of plant species in a biodiversity hotspot is stabilized by competition but not by seed predation. Oikos, 126.

  • Ossowski S, Schneeberger K, Lucas-Lled´o JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M, (2010) The rate and molecularspectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92–94

    Article  PubMed  CAS  Google Scholar 

  • Roles AJ, Conner JK (2008) Fitness effects of mutation accumulation in a natural outbred population of wild radish (Raphanus raphanistrum): comparison of field and greenhouse environments. Evolution 62:1066–1075. https://doi.org/10.1111/j.1558-5646.2008.00354.x

    Article  PubMed  Google Scholar 

  • Roles AJ, Rutter MT, Fenster CB, Conner JK (2016) Field measurement of genotype by environment interaction for fitness caused by spontaneous mutations in Arabidopsis thaliana. Evolution 70:1039–1050

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2011). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

  • Rutter MT, Shaw FH, Fenster CB (2010) Spontaneous mutation parameters for Arabidopsis thaliana measured in the wild. Evolution 64:1825–1835

    Article  PubMed  Google Scholar 

  • Rutter M, Roles A, Conner J, Shaw R, Shaw F, Schneeberger K, Ossowski S, Weigel D, Fenster CB (2012) Brief Communication: Fitness of Arabidopsis thaliana mutation accumulation lines whose spontaneous mutations are known. Evolution 66:2335–2339

    Article  PubMed  Google Scholar 

  • Rutter MT, Roles AJ, Fenster CB (2018) Quantifying natural seasonal variation in mutation parameters with mutation accumulation lines. Ecol Evol. https://doi.org/10.1002/ece3.4085

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaack S, Allen DE, Latta LC, Morgan KK, Lynch M (2013) The effect of spontaneous mutations on competitive ability. J Evol Biol 26:451–456

    Article  PubMed  CAS  Google Scholar 

  • Shaw RG, Byers DL, Darmo E (2000) Spontaneous mutational effects on reproductive traits of Arabidopsis thaliana. Genetics 155:369–378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shaw FH, Geyer CJ, Shaw RG (2002) A comprehensive model of mutations affecting fitness and inferences for Arabidopsis thaliana. Evolution 56:453–463

    Article  PubMed  Google Scholar 

  • Shefferson RP, Roberto S-G, Mark R (2015) Eco-evolutionary dynamics in plants: interactive processes at overlapping time-scale and their implications. J Ecol 103:789–797

    Article  Google Scholar 

  • Soliveres S, Smit C, Maestre FT (2015a) Moving forward on facilitation research: response to changing environments and effects on the diversity, functioning and evolution of plant communities. Biol Rev Camb Philos Soc 90:297–313

    Article  PubMed  Google Scholar 

  • Soliveres S et al (2015b) Intransitive competition is widespread in plant communities and maintains their species richness. Ecol Lett 18:790–798. https://doi.org/10.1111/ele.12456

    Article  PubMed  PubMed Central  Google Scholar 

  • Stearns FW, Fenster CB (2016) The effect of induced mutations on quantitative traits in Arabidopsis thaliana: Natural versus artificial conditions. Ecol Evol. https://doi.org/10.1002/ece3.2558

    Article  PubMed  PubMed Central  Google Scholar 

  • Strauss SY, Irwin RE (2004) Ecological and evolutionary consequences of multispecies plant-animal interactions. Annu Rev Ecol Evol Syst 35:435–466

    Article  Google Scholar 

  • Taylor DR, Aarssen LW, Loehle C (1990) On the relationship between r/K selection and environmental carrying capacity: a new habitat templet for plant life history strategies. Oikos 58:239–250

    Article  Google Scholar 

  • Tiffin P (2002) Competition and time of damage affect the pattern of slection acting on plant defense against herbivores. Ecology 83:1981–1990. https://doi.org/10.1890/0012-9658(2002)083[1981:CATODA]2.0.CO;2

    Article  Google Scholar 

  • Tilman D. (2004). Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc Natl Acad Sci USA 101, 10 854–10 861. Doi:https://doi.org/10.1073/Pnas.0403458101

  • Turcotte MM, Levine JM (2016) Phenotypic plasticity and species coexistence. Trends Ecol Evol (amst) 31:803–813

    Article  Google Scholar 

  • Uriarte M, Swenson NG, Chazdon RL, Comita LS, John Kress W, Erickson D et al (2010) Trait similarity, shared ancestry and the structure of neighbourhood interactions in a subtropical wet forest: implications for community assembly. Ecol Lett 13:1503–1514

    Article  PubMed  Google Scholar 

  • Ushio M (2022) Interaction capacity as a potential driver of community diversity. Proc. R. Soc. B.2892021269020212690. Doi: https://doi.org/10.1098/rspb.2021.2690

  • Van Dam NM, Baldwin IT (1998) Costs of jasmonate-induced responses in plants competing for limited resources. Ecol Lett 1:30–33. https://doi.org/10.1046/j.1461-0248.1998.00010.x

    Article  Google Scholar 

  • Mark V, Geber MA (2005) Connections between species diversity and genetic diversity. Ecol Lett 8:767–781

    Article  Google Scholar 

  • Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C et al (2012) The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol 27:244–252

    Article  PubMed  Google Scholar 

  • Violle C, Jiang L (2009) Towards a trait-based quantification of species niche. J Plant Ecol 2:87–93

    Article  Google Scholar 

  • Violle C, Thuiller W, Mouquet N, Munoz F, Kraft NJB, Cadotte MW et al (2017) Functional rarity: the ecology of outliers. Trends Ecol Evol 32:356–367

    Article  PubMed  PubMed Central  Google Scholar 

  • Weng M-L, Becker C, Hildebrandt J, Rutter MT, Shaw RG, Weigel D, Fenster CB (2019) Fine-grained analysis of spontaneous mutation spectrum and frequency in Arabidopsis thaliana. Genetics 211:703–714.

    Article  PubMed  CAS  Google Scholar 

  • Weng M-L, Ågren J, Imbert E, Nottebrock H, Rutter MT, Fenster CB (2021) Fitness effects of mutation in natural populations of Arabidopsis thaliana reveal a complex influence of local adaptation. Evolution 75:330–348.

    Article  PubMed  CAS  Google Scholar 

  • Whitham TG, Young WP, Martinsen GD, Gehring CA, Schweitzer JA, Shuster SM, Wimp GM, Fischer DG, Bailey JK, Lindroth RL, Woolbright S, Kuske CR (2003) Community and ecosystem genetics: a consequence of extended phenotype. Ecology 84:559–573.

    Article  Google Scholar 

  • Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy CJ et al (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet 7:510–523

    Article  PubMed  CAS  Google Scholar 

  • Whitlock R, Lortie C (2014) Relationships between adaptive and neutral genetic diversity and ecological structure and functioning: a meta-analysis. J Ecol 102:857–872

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

C. Fenster’s and T. Rutter's work on mutations has been supported by NSF.

Author information

Authors and Affiliations

Authors

Contributions

HN, CBF and MTR conceived the idea; CBF and MTR designed the experiment and collected the data. HN developed the study idea and model design, analyzed the data and interpreted the results. HN led the writing and drafted a first version of the article. All critically contributed to the drafts and results interpretation and gave final approval for publication.

Corresponding author

Correspondence to Henning Nottebrock.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Supplementary file2 (DOCX 401 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nottebrock, H., Weng, ML., Rutter, M.T. et al. Intraspecific competitive interactions rapidly evolve via spontaneous mutations. Evol Ecol 36, 787–805 (2022). https://doi.org/10.1007/s10682-022-10205-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-022-10205-5

Keywords

Navigation