Skip to main content
Log in

Fish scale shape follows predictable patterns of variation based on water column position, body size, and phylogeny

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

The influence of environment and phylogeny on morphological characteristics of organisms is well documented. However, little is known about how these factors influence scale shape in fishes, a feature which may be important for drag reduction. We evaluated the impact of both on scale shape variation in the primarily benthic, riverine darter clade (Percidae: Etheostomatinae) of fishes. We predicted that darters with close phylogenetic relationships and/or shared ecologies would have more similar scale shapes, but this relationship would be mediated by use of the substrate boundary layer. We used geometric morphometrics and seven homologous landmarks for 92 species of darters representing all genera and 37 clades within genera to measure scale shape. Phylogenetic relationships and ecological variables describing habitat, spawning mode, and maximum body size of each species were summarized from the literature. We used ordinations to examine scale shape variation among phylogenetic and ecological groups. We conducted Phylogenetic Generalized Least Squares analyses to test for relationships between scale shape and ecological characteristics. Scale shape variation occurred within and among darter clades, and was significantly related to phylogeny. However, we found divergent scale shapes between close relatives and similar scale shapes between distantly related species. After accounting for phylogenetic signal, size and water column position were related to scale shape. Extra-large, hyperbenthic species had longer, narrower scales that may decrease laminar drag. Sub-benthic darters had scales that were narrower at the insertion, and with enlarged ctenial margins that may facilitate burying. Among benthic darters, size was significantly related to scale shape though a lack of clustering among many taxonomic and ecological groups may indicate that boundary layer use has reduced selective pressures from drag. Our results are consistent with others that have found both environment and phylogeny influence Teleost fish morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Upon acceptance to journal, any data which supports the findings of this study will be deposited in Dryad.

Code availability

Code will be available from the corresponding author on reasonable request.

References

  • Adams DC (2014) A generalized K-statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst Biol 63(5):685–697

    Article  PubMed  Google Scholar 

  • Adams DC, Collyer ML (2015) Permutation tests for phylogenetic comparative analyses of high-dimensional shape data: what you shuffle matters. Evol 69(3):823–829

    Article  Google Scholar 

  • Adams DC, Collyer ML (2018) RRPP: an R package for fitting linear models to high-dimensional data using residual randomization. Methods Ecol Evol 9(7):1772–1779

    Article  Google Scholar 

  • Adams DC, Collyer ML, Kaliontzopoulou A, Baken E (2021) Geomorph: Software for geometric morphometric analyses. R package version 4.0.0. https://cran.r-project.org/package=geomorph. Accessed Aug 2021

  • Agrawal AA (2017) Toward a predictive framework for convergent evolution: integrating natural history, genetic mechanisms, and consequences for diversity of life. Am Nat 190(S1):S1–S12

    Article  PubMed  Google Scholar 

  • Binning SA, Roche DG (2015) Water flow and fin shape polymorphism in coral reef fishes. Ecology 96(3):828–839

    Article  PubMed  Google Scholar 

  • Boschung HT, Mayden RL (2004) Fishes of Alabama. Smithsonian Books, Washington, D.C.

    Google Scholar 

  • Boschung HT, Nieland D (1986) Biology and conservation of the slackwater darter, Etheostoma boschungi (Pisces: Percidae). Southeast Fishes Counc Proc 4(4):1–4

    Google Scholar 

  • Bossu CM, Near TJ (2015) Ecological constraint and the evolution of sexual dichromatism in darters. Evolution 69(5):1219–1231

    Article  PubMed  Google Scholar 

  • Bower LM, Piller KR (2015) Shaping up: a geometric morphometric approach to assemblage ecomorphology. J Fish Biol 87(3):691–714

    Article  CAS  PubMed  Google Scholar 

  • Bower LM, Saenz DE, Winemiller KO (2021) Widespread convergence in stream fishes. Biol J Linn Soc XX:1–17

    Google Scholar 

  • Braasch ME, Smith PW (1967) The life history of the slough darter, Etheostoma gracile (Pisces, Percidae). Ill Nat Hist Surv 58:1–12

    Google Scholar 

  • Bräger Z, Staszny Á, Mertzen M et al (2017) Fish scale identification: from individual to species-specific shape variability. Acta Ichtyol Piscat 47(4):331–338

    Article  Google Scholar 

  • Brinsmead J, Fox MG (2002) Morphological variation between lake- and stream-dwelling rock bass and pumpkinseed populations. J Fish Biol 61(6):1619–1638

    Article  Google Scholar 

  • Burns MD, Sidlauskas BL (2019) Ancient and contingent body shape diversification in a hyperdiverse continental fish radiation. Evolution 73(3):569–587

    Article  PubMed  Google Scholar 

  • Burr BM, Page LM (1978) The life history of the cypress darter, Etheostoma proeliare in Max Creek, Illinois. Biol Notes 106:1–15

    Google Scholar 

  • Burr BM, Page LM (1993) A new species of Percina (Odontopholis) from Kentucky and Tennessee with comparisons to Percina cymatotaenia. Bull Alabama Museum Nat Hist 16:15–28

    Google Scholar 

  • Burress ED, Holcomb JM, Tan M et al (2017) Ecological diversification associated with the benthic-to-pelagic transition by North American minnows. J Evol Biol 30(3):549–560

    Article  CAS  PubMed  Google Scholar 

  • Carlson RL, Lauder GV (2011) Escaping the flow: boundary layer use by the darter Etheostoma tetrazonum (Percidae) during benthic station holding. J Exp Biol 214:1181–1193

    Article  PubMed  Google Scholar 

  • Carlson RL, Wainwright PC (2010) The ecological morphology of darter fishes (Percidae: Etheostomatinae). Biol J Linn Soc 100:30–45

    Article  Google Scholar 

  • Carney DA, Burr BM (1989) Life histories of the bandfin darter, Etheostoma zonistium, and the firebelly darter, Etheostoma pyrrhogaster, in western Kentucky. Biol Notes 134:1–16

    Google Scholar 

  • Casatti L, Castro RMC (2006) Testing the ecomorphological hypothesis in a headwater riffles fish assemblage of the rio São Francisco, southeastern Brazil. Neotrop Ichthyol 4(2):203–214

    Article  Google Scholar 

  • Ciccotto PJ, Mendelson TC (2015) Evolution of the premaxillary fraenum and substratum in snubnose darters and allies (Percidae: Etheostoma). J Fish Biol 87:1090–1098

    Article  CAS  PubMed  Google Scholar 

  • Claverie T, Wainwright PC (2014) A morphospace for reef fishes: Elongation is the dominant axis of body shape evolution. PLoS ONE 9(11):1–11

    Article  Google Scholar 

  • Coburn MM, Gaglione JI (1992) A comparative study of Percid scales (Teleostei: Perciformes). Copeia 4:986–1001

    Article  Google Scholar 

  • Collette BB, Yerger RW (1962) The American percid fishes of the subgenus Villora. Tulane Stud Zool Bot 9(4):213–230

    Google Scholar 

  • Collyer ML, Adams DC (2020) Phylogenetically aligned component analysis. Methods Ecol Evol 12:359–372

    Article  Google Scholar 

  • Compton M, Taylor C (2013) Analysis of the environmental requirements for Etheostoma maydeni (Redlips Darter) and Percina squamata (Olive Darter) in the Rockcastle River. Kentucky. Annu Res 6(Oct):14–21

    Google Scholar 

  • Cummings KS, Grady JM, Burr BM (1984) The life history of the mud darter, Etheostoma asprigene, in Lake Creek, Illinois. Biol Notes 122:1–16

    Google Scholar 

  • Distler DA (1972) Observations on the reproductive habits of captive Etheostoma cragini Gilbert. Southwest Nat 16(3/4):439–441

    Article  Google Scholar 

  • Duncan RS, Elliott CP, Fluker BL et al (2010) Habitat use of the watercress darter (Etheostoma nuchale): an endangered fish in an urban landscape. Am Midl Nat 164(1):9–21

    Article  Google Scholar 

  • Etnier DA, Starnes WC (1993) The fishes of Tennessee. University of Tennessee Press, Knoxville

    Google Scholar 

  • Fisher WL (1990) Life history and ecology of the orangefin darter Etheostoma bellum (Pisces: Percidae). Am Midl Nat 123(2):268–281

    Article  Google Scholar 

  • Fletcher AM (1976) A rare darter-spawning. Am Curr 4(1):20–22

    Google Scholar 

  • Foster K, Bower L, Piller K (2015) Getting in shape: habitat-based morphological divergence for two sympatric fishes. Biol J Linn Soc 114:152–162

    Article  Google Scholar 

  • Geheber AD, Frenette BD (2016) Separation in habitat use and phylogenetic influence on habitat use among fishes in diverse temperate stream communities. Hydrobiologia 767(1):235–248

    Article  Google Scholar 

  • Guill JM, Heins DC, Hood CS (2003) The effect of phylogeny on interspecific body shape variation in darters (Pisces: Percidae). Syst Biol 52(4):488–500

    Article  PubMed  Google Scholar 

  • Hoerner SF (1965) Fluid-dynamic drag. (Published by the author), Midland Park

  • Hopper GW, Morehouse RL, Tobler M (2017) Body shape variation in two species of darters (Etheostoma, Percidae) and its relation to the environment. Ecol Freshw Fish 26(1):1–15

    Article  Google Scholar 

  • Ibáñez AL (2015) Fish traceability: guessing the origin of fish from a seafood market using fish scale shape. Fish Res 170:82–88

    Article  Google Scholar 

  • Ibañez AL, Cowx IG, O'Higgins P (2007) Geometric morphometric analysis of fish scales for identifying genera, species, and local populations within the Mugilidae. Can J Fish Aquat Sci 64(8):1091–1100

  • Ibáñez AL, Cowx IG, O’Higgins P (2009) Variation in elasmoid fish scale patterns is informative with regard to taxon and swimming mode. Zool J Linn Soc 155:834–844

    Article  Google Scholar 

  • Jenkins RE (1980) Etheostoma podostemone. In: Lee DS, Gilbert CR, Hocutt CH et al (eds) Atlas of North American freshwater fishes. North Carolina State Museum of Natural Sciences, Raleigh

    Google Scholar 

  • Jenkins RE, Burkhead NM (1993) Freshwater fishes of Virginia. American Fisheries Society, Bethesda

    Google Scholar 

  • Johnston CE (1994) Spawning behavior of the goldstripe darter (Etheostoma parvipinne Gilbert and Swain) (Percidae). Copeia 1994(3):823–825

    Article  Google Scholar 

  • Johnston CE, Johnson DL (2000) Sound production during the spawning season in cavity-nesting darters of the subgenus Catonotus (Percidae: Etheostoma). Copeia 2:475–481

    Article  Google Scholar 

  • Johnston CE, Farnau NA, Bart HL et al (1999) Laboratory observations of spawning behavior in two species of snubnose darters, Etheostoma colorosum and E. tallapoosae. Southeast Fishes Counc Proc 1(38):1–7

    Google Scholar 

  • Keevin TM, Page LM, Johnston CE (1989) The spawning behavior of the saffron darter (Etheostoma flavum). Trans Kentucky Acad Sci 50:55–58

    Google Scholar 

  • Kelly NB, Near TJ, Alonzo SH (2012) Diversification of egg-deposition behaviors and the evolution of male parental care in darters (Teleostei: Percidae: Etheostomatinae). J Evol Biol 25(5):386–846

    Article  Google Scholar 

  • Krabbenhoft TJ, Collyer ML, Quattro JM (2009) Differing evolutionary patterns underlie convergence on elongate morphology in endemic fishes of Lake Waccamaw. N C Biol J Linn Soc 98(3):636–645

    Article  Google Scholar 

  • Kuehne RA, Barbour RW (1983) The American darters. The University Press of Kentucky, Lexington

    Google Scholar 

  • Langerhans RB (2008) Predictability of phenotypic differentiation across flow regimes in fishes. Integr Comp Biol 48(6):750–768

    Article  PubMed  Google Scholar 

  • Lauder GV, Wainwright DK, Domel AG et al (2016) Structure, biomimetics, and fluid dynamics of fish skin surfaces. Phys Rev Fluids 1(6):060502

    Article  Google Scholar 

  • Leal CG, Junqueira NT, Pompeu PS (2011) Morphology and habitat use by fishes of the Rio das Velhas basin in southeastern Brazil. Environ Biol Fishes 90(2):143–157

    Article  Google Scholar 

  • Losos JB (1990) The evolution of form and function: morphology and locomotor performance in West Indian Anolis lizards. Evolution 44(5):1189–1203

    Article  PubMed  Google Scholar 

  • Losos JB, Jackman TR, Larson A et al (1998) Contingency and determinism in replicated adaptive radiations of island lizards. Science 279(5359):2115–2118

    Article  CAS  PubMed  Google Scholar 

  • MacGuigan DJ, Near TJ (2018) Phylogenomic signatures of ancient introgression in a rogue lineage of Darters (Teleostei: Percidae). Syst Biol 68(2):329–346

    Article  PubMed Central  Google Scholar 

  • Maddison WP, Maddison DR (2018) Mesquite: a modular system for evolutionary analysis. Version 3:51

    Google Scholar 

  • Martin ZP, Page LM (2015) Comparative morphology and evolution of genital papillae in a genus of darters (Percidae: Etheostoma). Copeia 2015:99–124

    Article  Google Scholar 

  • McGhee GR (2011) Convergent evolution: limited forms most beautiful. MIT Press

    Book  Google Scholar 

  • Mendelson TC (2003) Evidence of intermediate and asymmetrical behavioral isolation between orangethroat and orangebelly darters (Teleostei: Percidae). Am Midl Nat 150(2):343–347

    Article  Google Scholar 

  • Meyers PJ, Belk MC (2014) Shape variation in a benthic stream fish across flow regimes. Hydrobiologia 738:147–154

    Article  Google Scholar 

  • Muller B (2008) Scaly sand darter (Ammocrypta vivax): Observations and captive spawning. Am Curr 34(1):1–2

    Google Scholar 

  • Near TJ, Bossu CM, Bradburd GS et al (2011) Phylogeny and temporal diversification of darters (Percidae: Etheostomatinae). Syst Biol 60:565–595

    Article  PubMed  Google Scholar 

  • Oeffner J, Lauder GV (2012) The hydrodynamic function of shark skin and two biomimetic applications. J Exp Biol 215(5):785–795

    Article  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M et al (2020) Vegan: community ecology package. R package version 2.5-7. https://cran.r-project.org/package=vegan. Accessed Aug 2021

  • Oliveira DR, Brendan NR, Fitzpatrick SW (2021) Genome-wide diversity and habitat underlie fine-scale phenotypic differentiation in the rainbow darter (Etheostoma caeruleum). Evol Appl 14(2):498–512

    Article  CAS  PubMed  Google Scholar 

  • Orr JW, Ramsey JS (1990) Reproduction in the greenbreast darter, Etheostoma jordani (Teleostei: Percidae). Copeia 1:100–107

    Article  Google Scholar 

  • Ospina-Garcés SM, Escobar F, Baena ML et al (2018) Do dung beetles show interrelated evolutionary trends in wing morphology, flight biomechanics and habitat preference? Evol Ecol 32(6):663–682

    Article  Google Scholar 

  • Page LM (1975) Relations among the darters of the subgenus Catonotus of Etheostoma. Copeia 1975(4):782–784

    Article  Google Scholar 

  • Page LM (1976) The life history of the stripetail darter, Etheostoma kennicotti, in Big Creek, Illinois. Ill Nat Hist Surv Biol Notes 93:1–15

    Google Scholar 

  • Page LM (1983) Handbook of darters. TFH Publications Incorporated, Neptune City

    Google Scholar 

  • Page LM (2000) Etheostomatinae. In: Craig JF (ed) Percid fishes: systematics, ecology, and exploitation. Blackwell Science, Oxford, pp 225–253

    Chapter  Google Scholar 

  • Page LM, Burr BM (1976) The life history of the slabrock darter: Etheostoma smithi, in Ferguson Creek, Kentucky. Biol Notes 99:1–12

    Google Scholar 

  • Page LM, Burr BM (2011) Darters and perches. Peterson field guide to freshwater fishes of North America north of Mexico, 2nd edn. Houghton Mifflin Harcourt, New York, pp 508–602

    Google Scholar 

  • Page LM, Smith PW (1971) The life history of the slenderhead darter, Percina phoxocephala, in the Embarras River, Illinois. Biol Notes 74:1–14

    Google Scholar 

  • Page LM, Swofford DL (1984) Morphological correlates of ecological specialization in darters. Environmental biology of darters. Springer, Dordrecht, pp 103–123

    Chapter  Google Scholar 

  • Page LM, Smith PW, Burr BM et al (1985) Evolution of reproductive behaviors in percid fishes. Ill Nat Hist Surv Bull 33(3):275–295

  • Page LM, Ceas PA, Swofford DL et al (1992) Evolutionary relationships within the Etheostom aquamiceps complex (Percidae; subgenus Catonotus) with descriptions of five new species. Copeia 1992:615–646

  • Pagotto J, Goulart E, Oliviera E et al (2011) Trophic ecomorphology of Siluriformes (Pisces, Osteichthyes) from a tropical stream. Braz J Biol 71(2):469–479

    Article  CAS  PubMed  Google Scholar 

  • Paine MD, Dodson JJ, Power G (1982) Habitat and food resource partitioning among four species of darters (Percidae: Etheostoma) in a southern Ontario stream. Can J Zool 60(7):1635–1641

    Article  Google Scholar 

  • Petravicz WP (1938) The breeding habits of the black-sided darter, Hadropterus maculatus Girard. Copeia 1938(1):40–44

    Article  Google Scholar 

  • Pigot AL, Sheard C, Miller ET et al (2020) Macroevolutionary convergence connects morphological form to ecological function in birds. Nat Ecol Evol 4(2):230–239

    Article  PubMed  Google Scholar 

  • Pflieger WL, Sullivan M, Taylor L (1997) The fishes of Missouri. Missouri Department of Conservation, Jefferson City

    Google Scholar 

  • Porterfield JC (1997) Separation of spawning habitat in the sympatric snubnose darters Etheostoma flavum and E. simoterum (Teleostei, Percidae). Trans Ky Acad Sci 58:4–8

    Google Scholar 

  • Porterfield JC (1998) Spawning behavior of snubnose darters (Percidae) in natural and laboratory environments. Environ Biol Fishes 53(4):413–419

    Article  Google Scholar 

  • R-Development-Core-Team (2021) R: a language and environment for statistical computing. Version 4.1.1. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed Aug 2021

  • Renjith RK, Jaiswar AK, Chakraborty SK et al (2014) Application of scale shape variation in fish systematics—an illustration using six species of the family Nemipteridae (Teleostei: Perciformes). Indian J Fish 61(4):88–92

    Google Scholar 

  • Rincon-Sandoval M, Duarte-Ribeiro E, Davis AM et al (2020) Evolutionary determinism and convergence associated with water-column transitions in marine fishes. Proc Natl Acad Sci 117(52):33396–33403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robins RH, Page LM, Williams JD et al (2018) Fishes in the fresh waters of Florida. University of Florida Press, Gainesville

    Book  Google Scholar 

  • Robison HW, Buchanan TM (1988) Fishes of Arkansas. University of Arkansas Press, Fayetteville

    Google Scholar 

  • Rodríguez-González AG, Sarabeev V, Balbuena JA (2017) Evolutionary morphology in shape and size of haptoral anchors in 14 Ligophorus spp. (Monogenea: Dactylogyridae). PLoS ONE 12(5):1–15

    Article  Google Scholar 

  • Rohde FC, Arndt RG, Foltz JW et al (2009) Freshwater fishes of South Carolina. The University of South Carolina Press, Columbia

    Google Scholar 

  • Rohlf FJ (2005) tpsDig2: digitize landmarks and outlines. Version 2.26. Available at https://life.bio.sunysb.edu/morph/soft-dataacq.html. Accessed Feb 2016

  • Ross ST, Brenneman WM (2001) The inland fishes of Mississippi. University Press of Mississippi, Jackson

    Google Scholar 

  • Ruple DL, McMichael RH, Baker JA (1984) Life history of the gulf darter, Etheostoma swaini (Pisces: Percidae). In: Lindquist DG, Page LM (eds) Environmental biology of darters. Springer, Dordrecht

  • Scalet CG (1973) Reproduction of the orangebelly darter, Etheostoma radiosum cyanorum (Osteichthyes: Percidae). Am Midl Nat 98(1):156–165

    Article  Google Scholar 

  • Simon TP (1997) Ontogeny of the darter subgenus Doration with comments on intrasubgeneric relationships. Copeia 1997(1):60–69

    Article  Google Scholar 

  • Simon TP, Wallus R (2006) Reproductive biology and early life history of fishes in the Ohio River drainage: percidae-perch, pikeperch, and darters, vol 4. CRC Press, Boca Raton

    Google Scholar 

  • Smith PW (1979) The fishes of Illinois, 1st edn. University of Illinois Press, Champaign

    Google Scholar 

  • Spinner M, Kortmann M, Traini C et al (2016) Key role of scale morphology in flatfishes (Pleuronectiformes) in the ability to keep sand. Sci Rep 6(1):1–11

    Article  Google Scholar 

  • Steinberg R, Page LM, Porterfield JC (2000) The spawning behavior of the harlequin darter, Etheostoma histrio (Osteichthyes: Percidae). Icthyological Explor Freshwaters 11(2):141–148

    Google Scholar 

  • Strawn K (1956) A method of breeding and raising three Texas darters, Part II. Aquarium J 27:11–14, 17, 31

  • Tavera J, Acero A, Wainwright PC (2018) Multilocus phylogeny, divergence times, and a major role for the benthic-to-pelagic axis in the diversification of grunts (Haemulidae). Mol Phylogenet Evol 121:212–223

    Article  PubMed  Google Scholar 

  • Trautman MB (1981) The fishes of Ohio: with illustrated keys. Ohio State University Press, Columbus

    Google Scholar 

  • Velotta JP, McCormick SD, Jones AW et al (2018) Reduced swimming performance repeatedly evolves on loss of migration in landlocked populations of alewife. Physiol Biochem Zool 91:814–825

    Article  PubMed  Google Scholar 

  • Wainwright DK (2019) Fish scales: morphology, evolution, and function. Harvard University, Cambridge

    Google Scholar 

  • Wainwright DK, Lauder GV (2016) Three-dimensional analysis of scale morphology in bluegill sunfish, Lepomis macrochirus. Zoology 119(3):182–195

    Article  PubMed  Google Scholar 

  • Walters JP (1994) Spawning behavior of Etheostoma zonale (Pisces: Percidae). Copeia 1994(3):818–821

    Article  Google Scholar 

  • Warren Jr ML, Burr BM, Kuhajda BR (1986) Aspects of the reproductive biology of Etheostoma tippecanoe with comments on egg-burying behavior. Am Midl Nat 116(1):215–218

  • Watanabe A, Fabre AC, Felice RN et al (2019) Ecomorphological diversification in squamates from conserved pattern of cranial integration. Proc Natl Acad Sci 116(29):14688–14697

  • Webb PW (1984) Body form, locomotion and foraging in aquatic vertebrates. Am Zool 24(1):107–120

    Article  Google Scholar 

  • Webb PW (1988) Simple physical principles and vertebrate aquatic locomotion. Am Zool 28(2):709–725

    Article  Google Scholar 

  • Widlak JC, Neves RJ (1985) Age, growth, food habits, and reproduction of the redline darter Etheostoma rufilineatum (Cope) (Perciformes: Percidae) in Virginia. Brimleyana 11:69–80

    Google Scholar 

  • Winn HE (1958a) Observation on the reproductive habits of darters (Pisces-Percidae). Am Midl Nat 59(1):190–212

    Article  Google Scholar 

  • Winn HE (1958b) Comparative reproductive behavior and ecology of fourteen species of darters (Pisces-Percidae). Ecol Monogr 28(2):155–191

    Article  Google Scholar 

  • Winn HE, Picciolo AR (1960) Communal spawning of the glassy darter Etheostoma vitreum (Cope). Copeia 3:186–192

    Article  Google Scholar 

  • Zelditch ML, Swiderski DL, Sheets HD (2012) Geometric morphometrics for biologists: a primer, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Zelditch ML, Ye J, Mitchell JS, Swiderski DL (2017) Rare ecomorphological convergence on a complex adaptive landscape: body size and diet mediate evolution of jaw shape in squirrels (Sciuridae). Evolution 71(3):633–649

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank multiple natural history collections for the specimen loans used in this research including the APSU (Austin Peay State University) David H. Snyder Museum of Zoology Fish Collection, the University of Tennessee Etnier Ichthyological Collection, the North Carolina Museum of Natural Sciences’ Ichthyology Collection, the Royal D. Suttkus Fish Collection at the Tulane University Biodiversity Research Institute, the University of Alabama Ichthyological Collection, the Moorehead State University Collection of Fishes, and the Illinois Natural History Survey Fish Collection and especially their respective collections managers and curators. This work was supported by the National Science Foundation (DBI-1349391), the Center of Excellence for Field Biology at Austin Peay State University, and the Society for Freshwater Science. We also thank those who aided our specimen and data collection in several ways including Nastasia Disotell, Dr. Larry Page, Josh Stonecipher, Brooke Washburn, Nicholas Grady, Dr. David Eisenhour (Morehead State University), Lynn Eisenhour, Dr. Michael Doosey, Meg Doosey, Cortney Weyand, Bailey Rodkey, and Dr. Sarah Lundin-Schiller (APSU).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [JTG] and [LMB]. The first draft of the manuscript was written by [JTG] and [REB] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jessica T. Grady.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

All authors consent to this research being published.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grady, J.T., Bower, L.M., Gienger, C.M. et al. Fish scale shape follows predictable patterns of variation based on water column position, body size, and phylogeny. Evol Ecol 36, 93–116 (2022). https://doi.org/10.1007/s10682-021-10142-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-021-10142-9

Keywords

Navigation