Associating physiological functions with genomic variability in hibernating bats

Abstract

The challenges of surviving periods of increased physiological stress elicit selective pressures that drive adaptations to overcome hardships. Bats in the Palearctic region survive winter in hibernation. We sampled single nucleotide polymorphisms (SNPs) in hibernating Myotis myotis bats using double-digest restriction site-associated DNA sequencing and we associated the genomic variability with the observed phenotypes reflecting hibernation site preference, body condition and bat health during hibernation. We did not observe genotype associations between the detrended body condition index, representing fat reserves, and functional genes involved in fat metabolism. Bat body surface temperature, reflecting roost selection, or roost warmth relative to the climate at the site did not show any associations with the sampled genotypes. We found SNPs with associations to macroclimatic variables, characterising the hibernaculum, and blood biochemistry, related to health of the bat. The genes in proximity of the associated SNPs were involved in metabolism, immune response and signal transduction, including chaperones, apoptosis and autophagy regulators and immune signalling molecules. The genetic adaptations included adaptation to tissue repair and protection against tissue damage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data accessibility

All data presented in this study are available in the article, its supplementary information, and in the NCBI SRA database (BioProject ID: PRJNA681157).

References

  1. Ahn AH, Freener CA, Gussoni E, Yoshida M, Ozawa E, Kunkel LM (1996) The three human syntrophin genes are expressed in diverse tissues, have distinct chromosomal locations, and each bind to dystrophin and its relatives. J Biol Chem 271:2724–2730. https://doi.org/10.1074/jbc.271.5.2724

    CAS  Article  PubMed  Google Scholar 

  2. Auteri GG, Knowles LL (2020) Decimated little brown bats show potential for adaptive change. Sci Rep 10:3023. https://doi.org/10.1038/s41598-020-59797-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Bandouchova H, Bartonička T, Berkova H, Brichta J, Kokurewicz T, Kovacova V, Linhart P, Piacek V, Pikula J, Zahradníková A et al (2018) Alterations in the health of hibernating bats under pathogen pressure. Sci Rep 8:6067. https://doi.org/10.1038/s41598-018-24461-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Biggar Y, Storey KB (2014) Global DNA modifications suppress transcription in brown adipose tissue during hibernation. Cryobiology 69:333–338. https://doi.org/10.1016/j.cryobiol.2014.08.008

    CAS  Article  PubMed  Google Scholar 

  5. Boztug K, Järvinen PM, Salzer E, Racek T, Mönch S, Garncarz W, Gertz EM, Schäffer AA, Antonopoulos A, Haslam SM et al (2014) JAGN1 deficiency causes aberrant myeloid cell homeostasis and congenital neutropenia. Nat Genet 46:1021–1027. https://doi.org/10.1038/ng.3069

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Buckley LB, Khaliq I, Swanson DL, Hof C (2018) Does metabolism constrain bird and mammal ranges and predict shifts in response to climate change? Ecol Evol 8:12375–12385. https://doi.org/10.1002/ece3.4537

    Article  PubMed  PubMed Central  Google Scholar 

  7. Budd GE, Mann RP (2018) History is written by the victors: the effect of the push of the past on the fossil record. Evolution 72:2276–2291. https://doi.org/10.1111/evo.13593

    Article  PubMed  PubMed Central  Google Scholar 

  8. Carra S, Sivilotti M, Chávez Zobel AT, Lambert H, Landry J (2005) HSPB8, a small heat shock protein mutated in human neuromuscular disorders, has in vivo chaperone activity in cultured cells. Hum Mol Genet 14:1659–1669. https://doi.org/10.4161/auto.6.7.13042

    CAS  Article  PubMed  Google Scholar 

  9. Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140. https://doi.org/10.1111/mec.12354

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chionh YT, Cui J, Koh J, Mendenhall IH, Ng JH, Low D, Itahana K, Irving AT, Wang L-F (2019) High basal heat-shock protein expression in bats confers resistance to cellular heat/oxidative stress. Cell Stress Chaperones 24:835–849

    CAS  Article  Google Scholar 

  11. Collins C, Didelot X (2018) A phylogenetic method to perform genome-wide association studies in microbes that accounts for population structure and recombination. PLoS Comput Biol 14:e1005958. https://doi.org/10.1371/journal.pcbi.1005958

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Cryan PM, Meteyer CU, Blehert DS, Lorch JM, Reeder DM, Turner GG, Webb J, Behr M, Verant M, Russell RE, Castle KT (2013) Electrolyte depletion in white-nose syndrome bats. J Wildl Dis 49:398–402. https://doi.org/10.7589/2012-04-121

    CAS  Article  PubMed  Google Scholar 

  13. Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4:250–255. https://doi.org/10.3835/plantgenome2011.08.0024

    Article  Google Scholar 

  14. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F, May B et al (2017a) The reactome pathway knowledgebase. Nucleic Acids Res 46(D1):D649–D655. https://doi.org/10.1093/nar/gkv1351

    CAS  Article  PubMed Central  Google Scholar 

  15. Fabregat A, Sidiropoulos K, Viteri G, Forner O, Marin-Garcia P, Arnau V, D’Eustachio P, Stein L, Hermjakob H (2017b) Reactome pathway analysis: a high-performance in-memory approach. BMC Bioinform 18:142. https://doi.org/10.1186/s12859-017-1559-2

    CAS  Article  Google Scholar 

  16. Fadista J, Manning AK, Florez JC, Groop L (2016) The (in)famous GWAS p-value threshold revisited and updated for low-frequency variants. Eur J Hum Genet 24:1202–1205. https://doi.org/10.1038/ejhg.2015.269

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  18. Fritze M, Costantini D, Fickel J, Wehner D, Czirják GÁ, Voigt CC (2019) Immune response of hibernating European bats to a fungal challenge. Biol Open 8:046078. https://doi.org/10.1242/bio.046078

    CAS  Article  Google Scholar 

  19. Fu W, Hu H, Dang K, Chang H, Du B, Wu X, Gao Y (2016) Remarkable preservation of Ca\(^{2+}\) homeostasis and inhibition of apoptosis contribute to anti-muscle atrophy effect in hibernating Daurian ground squirrels. Sci Rep 6:27020. https://doi.org/10.1038/srep27020

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Grabek KR, Martin SL, Hindle AG (2015) Proteomics approaches shed new light on hibernation physiology. J Comput Physiol B 185:607–627. https://doi.org/10.1007/s00360-015-0905-9

    CAS  Article  Google Scholar 

  21. Harazim M, Horáček I, Jakešová L, Luermann K, Moravec JC, Morgan S, Pikula J, Sosík P, Vavrušová Z, Zahradníková A, Zukal J, Martínková N, (2018) Natural selection in bats with historical exposure to white-nose syndrome. BMC Zool. 3:8. https://doi.org/10.1186/s40850-018-0035-4

    Article  Google Scholar 

  22. Heinis FI, Vermillion KL, Andrews MT, Metzger JM (2015) Myocardial performance and adaptive energy pathways in a torpid mammalian hibernator. Am J Physiol Regul Integr Comp Physiol 309:R368–R377. https://doi.org/10.1152/ajpregu.00365.2014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Heldstab SA, Isler K, van Schaik CP (2018) Hibernation constrains brain size evolution in mammals. J Evol Biol 31:1582–1588. https://doi.org/10.1111/jeb.13353

    Article  PubMed  Google Scholar 

  24. Hijmans RJ (2020) raster: Geographic data analysis and modeling. R package version 3.3-13. https://CRAN.R-project.org/package=raster

  25. Hoang DT, Vinh LS, Chernomor O, Minh BQ, von Haeseler A (2018) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518–522. https://doi.org/10.1093/molbev/msx281

    CAS  Article  PubMed  Google Scholar 

  26. Hu K, Meng Y, Lei H, Zhang S (2011) Differential changes of regional cerebral blood flow in two bat species during induced hypothermia measured by perfusion-weighted magnetic resonance imaging. J Comp Physiol B 181:117–123. https://doi.org/10.1007/s00360-010-0500-z

    Article  PubMed  Google Scholar 

  27. Humphries MM, Thomas DW, Speakman JR (2002) Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418:313–316

    CAS  Article  Google Scholar 

  28. Ilyina TN, Baishnikova IV (2019) Adaptation to food deprivation in mammals: vitamins A and E. J Evol Biochem Physiol 55:184–190. https://doi.org/10.1134/S0022093019030037

    CAS  Article  Google Scholar 

  29. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. https://doi.org/10.1093/bioinformatics/btn129

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589. https://doi.org/10.1038/nmeth.4285

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Klüg-Baerwald BJ, Lausen CL, Willis CKR, Brigham RM (2017) Home is where you hang your bat: winter roost selection by prairie-living big brown bats. J Mammal 98:752–760. https://doi.org/10.1093/jmammal/gyx039

    Article  Google Scholar 

  32. Kokurewicz T, Speakman JR (2006) Age related variation in the energy costs of torpor in Daubenton’s bat: effects on fat accumulation prior to hibernation. Acta Chiropterologica 8:509–521. https://doi.org/10.3161/1733-5329(2006)8[509:ARVITE]2.0.CO;2

    Article  Google Scholar 

  33. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357. https://doi.org/10.1038/nmeth.1923

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50:913–925. https://doi.org/10.1080/106351501753462876

    CAS  Article  PubMed  Google Scholar 

  35. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Li HL, Gu XH, Li BJ, Chen CH, Lin HR, Xia JH (2017) Genome-wide QTL analysis identified significant associations between hypoxia tolerance and mutations in the GPR132 and ABCG4 genes in Nile tilapia. Mar Biotechnol 19:441–453. https://doi.org/10.1007/s10126-017-9762-8

    CAS  Article  Google Scholar 

  37. Lilley TM, Wilson IW, Field KA, Reeder DM, Vodzak ME, Turner GG, Kurta A, Blomberg AS, Hoff S, Herzog CJ, Sewall BJ, Paterson S (2020) Genome-wide changes in genetic diversity in a population of Myotis lucifugus affected by white-nose syndrome. G3 Genes Geom Genet 10:2007–2020. https://doi.org/10.1534/g3.119.400966

    CAS  Article  Google Scholar 

  38. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27(2 Part 1):209–220

    CAS  PubMed  Google Scholar 

  39. Martin SL, Epperson LE, Rose JC, Kurtz CC, Ané C, Carey HV (2008) Proteomic analysis of the winter-protected phenotype of hibernating ground squirrel intestine. Am J Physiol Regul Integr Comp Physiol 295:R316–R328. https://doi.org/10.1152/ajpregu.00418.2007

    CAS  Article  PubMed  Google Scholar 

  40. Martínková N, Pikula J, Zukal J, Kovacova V, Bandouchova H, Bartonička T, Botvinkin AD, Brichta J, Dundarova H, Kokurewicz T, Irwin NR, Linhart P, Orlov OL, Piacek V, Škrabánek P, Tiunov MP, Zahradníková A Jr (2018) Hibernation temperature-dependent Pseudogymnoascus destructans infection intensity in Palearctic bats. Virulence 9:1734–1750. https://doi.org/10.1080/21505594.2018.1548685

    CAS  Article  Google Scholar 

  41. Martínková N, Baird SJE, Káňa V, Zima J (2020) Bat population recoveries give insight into clustering strategies during hibernation. Front Zool 17:26. https://doi.org/10.1186/s12983-020-00370-0

    Article  PubMed  PubMed Central  Google Scholar 

  42. Martínková N, Škrabánek P (2018) fuzzyreg: an R package for fuzzy linear regression. In: Čech P, Svozil D (eds) ENBIK2018 conference proceedings. University of Chemistry and Technology, Prague, p 7. ISBN 978-80-7592-017-1

  43. Mayes Boustead BE, Hilberg SD, Shulski MD, Hubbard KG (2015) The accumulated winter season severity index (AWSSI). J Appl Meteorol Climatol 54:1693–1712. https://doi.org/10.1175/JAMC-D-14-0217.1

    Article  Google Scholar 

  44. Menne MJ, Durre I, Korzeniewski B, McNeal S, Thomas K, Yin X, Anthony S, Ray R, Vose RS, Gleason BE, Houston TG (2012a) Global historical climatology network-daily (GHCN-Daily), Version 3. NOAA National Climatic Data Center. https://doi.org/10.7289/V5D21VHZ,. 2019-09-18

  45. Menne MJ, Durre I, Vose RS, Gleason BE, Houston TG (2012b) An overview of the global historical climatology network-daily database. J Atmos Oceanic Technol 29:897–910. https://doi.org/10.1175/JTECH-D-11-00103.1

    Article  Google Scholar 

  46. Morin P Jr, Storey KB (2009) Mammalian hibernation: differential gene expression and novel application of epigenetic controls. Int J Dev Biol 53:433–442. https://doi.org/10.1387/ijdb.082643pm

    CAS  Article  PubMed  Google Scholar 

  47. Muggeo VM (2003) Estimating regression models with unknown break-points. Stat Med 22:3055–3071

    Article  Google Scholar 

  48. Neuwirth E (2014) RColorBrewer: ColorBrewer Palettes. R package version 1.1-2. https://CRAN.R-project.org/package=RColorBrewer

  49. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300

    CAS  Article  Google Scholar 

  50. Pebesma E (2018) Simple features for R: standardized support for spatial vector data. R J 10:439–446. https://doi.org/10.32614/RJ-2018-009

    Article  Google Scholar 

  51. Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7:e37135. https://doi.org/10.1371/journal.pone.0037135

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Piálek L, Burress E, Dragová K, Almirón A, Casciotta J, Říčan O (2019) Phylogenomics of pike cichlids (Cichlidae: Crenicichla) of the C. mandelburgeri species complex: rapid ecological speciation in the Iguazú River and high endemism in the Middle Paraná basin. Hydrobiologia 832:355–375. https://doi.org/10.1007/s10750-018-3733-6

    CAS  Article  Google Scholar 

  53. Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M, Jannink J (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103–113. https://doi.org/10.3835/plantgenome2012.06.0006

    CAS  Article  Google Scholar 

  54. Privé F, Luu K, Vilhjálmsson BJ, Blum MG (2020) Performing highly efficient genome scans for local adaptation with R package pcadapt version 4. Mol Biol Evol. https://doi.org/10.1093/molbev/msaa053

    Article  PubMed  Google Scholar 

  55. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  56. Škrabánek P, Martínková N (2017) Extraction of outliers from imbalanced sets. In: International conference on hybrid artificial intelligence systems. Springer, pp 402–412. https://doi.org/10.1007/978-3-319-59650-1

  57. Speakman JR, Rowland A (1999) Preparing for inactivity: how insectivorous bats deposit a fat store for hibernation. Proc Nutr Soc 58(1):123–131

    CAS  Article  Google Scholar 

  58. Thomas SP, Suthers RA (1972) The physiology and energetics of bat flight. J Exp Biol 57(2):317–335

    Google Scholar 

  59. van Buuren S, Groothuis-Oudshoorn K (2011) mice: Multivariate imputation by chained equations in R. J Stat Softw 45(3):1–67. https://doi.org/10.18637/jss.v045.i03

    Article  Google Scholar 

  60. Warnecke L, Turner JM, Bollinger TK, Misra V, Cryan PM, Blehert DS, Wibbelt G, Willis CKR (2013) Pathophysiology of white-nose syndrome in bats: a mechanistic model linking wing damage to mortality. Biol Lett 9:20130177. https://doi.org/10.1098/rsbl.2013.0177

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zahn A, Rodrigues L, Rainho A, Palmeirim JM (2007) Critical times of the year for Myotis myotis, a temperate zone bat: roles of climate and food resources. Acta Chiropterologica 9:115–125. https://doi.org/10.3161/1733-5329(2007)9[115:CTOTYF]2.0.CO;2

    Article  Google Scholar 

  62. Zhang J, Wei Y, Qu T, Wang Z, Xu S, Peng X, Yan X, Chang H, Wang H, Gao Y (2019) Prosurvival roles mediated by the PERK signaling pathway effectively prevent excessive endoplasmic reticulum stress-induced skeletal muscle loss during high-stress conditions of hibernation. J Cell Physiol 234:19728–19739. https://doi.org/10.1002/jcp.28572

    CAS  Article  PubMed  Google Scholar 

  63. Zhang Y (2016) On the use of \(p\)-values in genome wide disease association mapping. J Biomet Biostat 7:1000297. https://doi.org/10.4172/2155-6180.1000297

    Article  Google Scholar 

Download references

Acknowledgements

We thank Grzegorz Apoznanski, Tomas Heger, Vladimir Piacek and Jaroslav Veselý for technical assistance. The sequencing was performed in cooperation with EMBL GeneCore facility, Heidelberg, Germany. Computational resources were supplied by the “e-Infrastruktura CZ” (e-INFRA LM2018140) project provided within the Projects of Large Research, Development and Innovations Infrastructures project. This study was supported by The Czech Science Foundation (17-20286S) and Masaryk University (MUNI/A/1098/2019).

Author information

Affiliations

Authors

Contributions

MH, JP, JZ and NM conceptualized the study, MH and NM designed the study, EB, TB, TK, VS, JP and JZ collected the material, JP and VS measured blood parameters, MH and LP performed the laboratory experiments, MH, LP and NM analysed the data, MH and NM wrote the manuscript, and all authors reviewed the manuscript.

Corresponding author

Correspondence to Markéta Harazim.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical statement

Collecting the bat samples from the hibernacula in the Czech Republic complied with Czech Law No. 114/1992 on Nature and Landscape Protection. The authors were authorised to handle wild bats according to the Czech Certificate of Professional Competence (No. CZ01341; §17, Czech Act No. 246/1992 Coll.). Sampling was based on permit No. SR/0007/JM/2017 issued by the Agency for Nature Conservation and Landscape Protection of the Czech Republic. Sampling in Poland was approved by the Regional Directorate for Environmental Protection in Gorzów Wielkopolski (No. WPN-I-6205.10.2015.AI). Experimental procedures were approved by the Ethical Committee of the Academy of Sciences of the Czech Republic (No. 169/2011). The II Local Ethical Commission in Wrocław approved sampling at the “Nietoperek” Natura 2000 site in Poland (No. 45/2015).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harazim, M., Piálek, L., Pikula, J. et al. Associating physiological functions with genomic variability in hibernating bats. Evol Ecol 35, 291–308 (2021). https://doi.org/10.1007/s10682-020-10096-4

Download citation

Keywords

  • Genome-wide associations
  • ddRAD sequencing
  • Hibernation
  • Energy metabolism
  • Adaptation