Skip to main content
Log in

Lost in the hybridisation vortex: high-elevation Senecio hercynicus (Compositae, Senecioneae) is genetically swamped by its congener S. ovatus in the Bavarian Forest National Park (SE Germany)

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Hybridisation is an important evolutionary process. The investigation of hybridisation along elevational gradients, with their steep abiotic and biotic clines, provides insight into the adaptation and maintenance of species in adjacent habitats. The rare Senecio hercynicus and its spreading congener S. ovatus are vertically vicariant species that show hybridisation in their range overlaps. In the present study, we used AFLP fingerprinting of 689 individuals from 38 populations to analyse population structure and introgression patterns along four elevational transects (650–1350 m) in the Bavarian Forest National Park, Gemany. Subsequently, we searched for loci putatively under divergent selection that may maintain ‘pure’ species despite hybrid formation by identifying taxon-specific alleles. A maximum-likelihood based hybrid index shows that the overall genetic differentiation among all populations was very low with a vanishingly small number of pure parental individuals. Almost 75% of the investigated individuals were classified as backcrosses towards S. ovatus. The highest S. hercynicus ancestry was found in the uppermost populations of two transects. Further, we found seven taxon-specific alleles being under divergent selection that correlated with climatic variables and deviating from neutral introgression. According to our results, hybridisation of S. ovatus and S. hercynicus has reached an advanced state of genetic swamping and there seems to be no driving force that is strong enough to keep both species as different lineages. Rather, S. ovatus appears to benefit through putatively adaptive introgression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott RJ, Brennan AC (2014) Altitudinal gradients, plant hybrid zones and evolutionary novelty. Philos Trans R Soc B 369:20130346

    Article  Google Scholar 

  • Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N, Boughman J, Brelsford A, Buerkle CA, Buggs R, Butlin RK, Dieckmann U, Eroukhmanoff F, Grill A, Cahan SH, Hermansen JS, Hewitt G, Hudson AG, Jiggins C, Jones J, Keller B, Marczewski T, Mallet J, Martinez-Rodriguez P, Möst M, Mullen S, Nichols R, Nolte AW, Parisod C, Pfennig K, Rice AM, Ritchie MG, Seifert B, Smadja CM, Stelkens R, Szymura JM, Väinölä R, Wolf JBW, Zinner D (2013) Hybridization and speciation. J Evol Biol 26:229–246

    Article  CAS  PubMed  Google Scholar 

  • Antao T, Beaumont MA (2011) Mcheza: a workbench to detect selection using dominant markers. Bioinformatics 27:1717–1718

    Article  CAS  PubMed  Google Scholar 

  • Arnold ML, Tang S, Knapp SJ, Martin NH (2010) Asymmetric introgressive hybridisation among Louisiana Iris species. Genes 1:9–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baack EJ, Rieseberg LH (2007) A genomic view of introgression and hybrid speciation. Curr Opin Genet Dev 17:513–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balao F, García-Castaño JL (2014) AFLPsim: hybrid simulation and genome scan for dominant markers. R package version 0.3-3. http://cran.r-project.org/web/packages/AFLPsim/index.html. Accessed Dec 2014

  • Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Annu Rev Ecol Syst 16:113–148

    Article  Google Scholar 

  • Bässler C, Förster B, Moning C, Müller J (2009) The BIOKLIM project: biodiversity research between climate change and wilding in a temperate montane forest—the conceptual framework. Waldökologie Landschaftsforschung Naturschutz 7:21–34

    Google Scholar 

  • Bässler C, Müller J, Hothorn T, Kneib T, Badeck F, Dziock F (2010) Estimation of the extinction risk for high-montane species as a consequence of global warming and assessment of their suitability as cross-taxon indicators. Ecol Indic 10:341–352

    Article  Google Scholar 

  • Beaumont MA, Balding DJ (2004) Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol 13:969–980

    Article  CAS  PubMed  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Philos R Soc Lond B Biol 263:1619–1626

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Bothwell H, Bisbing S, Overgaard Therkildsen N, Crawford L, Alvarez N, Holderegger R, Manel S (2013) Identifying genetic signatures of selection in a non-model species, alpine gentian (Gentiana nivalis L.), using a landscape genetic approach. Conserv Genet 14:467–481

    Article  Google Scholar 

  • Brennan AC, Bridle JR, Wang AL, Hiscock SJ, Abbott RJ (2009) Adaptation and selection in the Senecio (Asteraceae) hybrid zone on Mount Etna, Sicily. New Phytol 183:702–717

    Article  PubMed  Google Scholar 

  • Burgess KS, Morgan M, Deverno L, Husband BC (2005) Asymmetrical introgression between two Morus species (M. alba, M. rubra) that differ in abundance. Mol Ecol 14:3471–3483

    Article  CAS  PubMed  Google Scholar 

  • Chapman MA, Hiscock SJ, Filatov DA (2013) Genomic divergence during speciation driven by adaptation to altitude. Mol Biol Evol 30:2553–2567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dierschke H (1995) Phänologische und symphänologische Artengruppen von Blütenpflanzen in Mitteleuropa. Tuexenia 15:523–560

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foll M, Gaggiotti O (2008) A genome scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993

    Article  PubMed  PubMed Central  Google Scholar 

  • Fritz R (2001) Plant hybrids. In: Levin S (ed) Encyclopedia of biodiversity, vol 1. Academic Press, San Diego, pp 659–675

    Google Scholar 

  • Gompert Z, Buerkle CA (2009) A powerful regression-based method for admixture mapping of isolation across the genome of hybrids. Mol Ecol 18:1207–1224

    Article  PubMed  Google Scholar 

  • Gompert Z, Buerkle CA (2010) Introgress: methods for analyzing introgression between divergent lineages. R package version 1.2.3. http://cran.r-project.org/web/packages/introgress/index.html. Accessed Sept 2014

  • Grant BR, Grant PR (1998) Hybridization and speciation in Darwin’s finches—the role of sexual imprinting on a culturally transmitted trait. In: Howard DJ, Berlocher SH (eds) Endless forms: species and speciation. Oxford University Press, Oxford, pp 404–424

    Google Scholar 

  • Haig SM, Allendorf FW (2006) Hybrids and policy. In: Scott JM, Goble DD, Davis FW (eds) The endangered species act at thirty, vol 2: conserving biodiversity in human-dominated landscapes. Island Press, Washington, pp 150–163

    Google Scholar 

  • Hamilton JA, Lexer C, Aitkin SN (2013) Differential introgression reveals candidate genes for selection across a spruce (Picea sitchensis × P. glauca) hybrid zone. New Phytol 197:927–938

    Article  CAS  PubMed  Google Scholar 

  • Henry P, Russello MA (2013) Adaptive divergence along environmental gradients in a climate-change-sensitive mammal. Ecol Evol 3:3906–3917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herborg J (1987) Die Variabilität und Sippenabgrenzung in der Senecio nemorensis-Gruppe (Compositae) im europäischen Teilareal. Diss Bot 107:1–262

    Google Scholar 

  • Herrera CM, Bazaga P (2008) Population-genomic approach reveals adaptive floral divergence in discrete populations of a hawk moth-pollinated violet. Mol Ecol 17:5378–5390

    Article  CAS  PubMed  Google Scholar 

  • Holland BR, Clarke AC, Meudt HM (2008) Optimizing automated AFLP scoring parameters to improve phylogenetic resolution. Syst Biol 57:347–366

    Article  PubMed  Google Scholar 

  • Holt BG, Côté IM, Emerson BC (2011) Searching for speciation genes: molecular evidence for selection associated with colour morphotypes in the Caribbean reef fish genus Hypoplectrus. PLoS ONE 6:e20394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquemyn H, Brys R, Honnay O, Roldán-Ruiz I (2012) Asymmetric gene introgression in two closely related Orchis species: evidence from morphometric and genetic analyses. BMC Evol Biol 12:178

    Article  PubMed  PubMed Central  Google Scholar 

  • James JK, Abbott RJ (2005) Recent, allopatric, homoploid hybrid speciation: the origin of Oxford ragwort, Senecio squalidus (Asteraceae), in the British Isles from a hybrid zone on Mount Etna, Sicily. Evolution 59:2533–2547

    Article  PubMed  Google Scholar 

  • Joost S, Bonin A, Bruford MW, Després L, Conord C, Erhardt G, Taberlet P (2007) A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol 16:3955–3969

    Article  CAS  PubMed  Google Scholar 

  • Joost S, Kalbermatten M, Bonin A (2008) Spatial analysis method (SAM): a software tool combining molecular and environmental data to identify candidate loci for selection. Mol Ecol Resour 8:957–960

    Article  PubMed  Google Scholar 

  • Körner C (2007) The use of “altitude” in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Legendre P, Borcard D, Blanchet FG, Dray S (2013) PCNM: MEM spatial eigenfunction and principal coordinate analyses. R package version 2.1-2/r109. http://r-forge.r-project.org/R/?group_id=195. Accessed Jan 2015

  • Levin DA, Francisco-Ortega J, Jansen RK (1996) Hybridization and the extinction of rare species. Conserv Biol 10:10–16

    Article  Google Scholar 

  • Lexer C, Buerkle CA, Joseph JA, Heinze B, Fay MF (2007) Admixture in European Populus hybrid zones makes feasible the mapping of loci that contribute to reproductive isolation and trait differences. Heredity 98:74–84

    Article  CAS  PubMed  Google Scholar 

  • Manel S, Poncet BN, Legendre P, Gugerli F, Holderegger R (2010) Common factors drive adaptive genetic variation at different spatial scales in Arabis alpina. Mol Ecol 19:3824–3835

    Article  PubMed  Google Scholar 

  • Manel S, Gugerli F, Thuiller W, Alvarez N, Legendre P, Holderegger R, Gielly L, Taberlet P, IntraBioDiv Consortium (2012) Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Mol Ecol 21:3729–3738

    Article  PubMed  PubMed Central  Google Scholar 

  • Meister J, Hubaishan M, Kilian N, Oberprieler C (2006) Temporal and spatial diversification of the shrub Justicia areysiana Deflers (Acanthaceae) endemic to the monsoon affected coastal mountains of the southern Arabian Peninsula. Plant Syst Evol 262:153–171

    Article  Google Scholar 

  • Moore WS (1977) An evaluation of narrow hybrid zones in vertebrates. Q Rev Biol 52:263–278

    Article  Google Scholar 

  • Nunes VL, Beaumont MA, Butlin RK, Paulo OS (2011) Multiple approaches to detect outliers in a genome scan for selection in ocellated lizards (Lacerta lepida) along an environmental gradient. Mol Ecol 20:193–205

    Article  PubMed  Google Scholar 

  • Oberprieler C (1994) Die Senecio nemorensis-Gruppe (Compositae, Senecioneae) in Bayern. Ber Bayer Bot Ges 64:7–54

    Google Scholar 

  • Oberprieler C, Barth A, Schwarz S, Heilmann J (2010) Morphological and phytochemical variation, genetic structure, and phenology in an introgressive hybrid swarm of Senecio hercynicus and S. ovatus (Compositae, Senecioneae). Plant Syst Evol 286:153–166

    Article  Google Scholar 

  • Oberprieler C, Dietz L, Harlander C, Heilmann J (2013) Molecular and phytochemical evidence for the taxonomic integrity of Salix alba, S. fragilis, and their hybrid S. × rubens (Salicaceae) in mixed stands in SE Germany. Plant Syst Evol 299:1107–1118

    Article  Google Scholar 

  • Oberprieler C, Heine G, Bässler C (2015) Can divergent selection save the rare Senecio hercynicus from genetic swamping by its spreading congener S. ovatus (Compositae, Senecioneae)? Flora 210:47–59

    Article  Google Scholar 

  • Oberprieler C, Bog M, Berchtold B (2016) Herbivory and fitness components in an introgressive hybrid swarm of S. hercynicus and S. ovatus (Compositae, Senecioneae). Flora 220:117–124

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2014) vegan: community ecology package. R package version 2.2-0. http://cran.r-project.org/web/packages/vegan/index.html. Accessed Nov 2014

  • Osborne OG, Batstone TE, Hiscock SJ, Filatov DA (2013) Rapid speciation with gene flow following the formation of Mt. Etna. Genome Biol Evol 5:1704–1715

    Article  PubMed  PubMed Central  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poncet BN, Herrmann D, Gugerli F, Taberlet P, Holderegger R, Gielly L, Rioux D, Thuiller W, Aubert S, Manel S (2010) Tracking genes of ecological relevance using a genome scan in two independent regional population samples of Arabis alpina. Mol Ecol 19:2896–2907

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK (2010) Documentation for structure software: version 2.3. http://pritchardlab.stanford.edu/structure_software/release_versions/v2.3.4/html/structure.html. Accessed Jan 2015

  • Pritchard JK, Stephens M, Donelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed July 2014

  • Raudnitschka D, Hensen I, Oberprieler C (2007) Introgressive hybridization of Senecio hercynicus and S. ovatus (Compositae, Senecioneae) along an altitudinal gradient in Harz National Park (Germany). Syst Biodivers 5:333–344

    Article  Google Scholar 

  • Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109

    Article  Google Scholar 

  • Richardson BA, Rehfeldt GE, Kim MS (2009) Congruent climate-related genecological responses from molecular markers and quantitative traits for western white pine (Pinus monticola). Int J Plant Sci 170:1120–1131

    Article  CAS  Google Scholar 

  • Rieseberg LH (2001) Chromosomal rearrangements and speciation. Trends Ecol Evol 16:351–358

    Article  PubMed  Google Scholar 

  • Rogstad SH (2003) Plant DNA extraction using silica. Plant Mol Biol Rep 21:463

    Article  Google Scholar 

  • Scascitelli M, Whitney KD, Randell RA, King M, Buerkle CA, Rieseberg LH (2010) Genome scan of hybridizing sunflowers from Texas (Helianthus annuus and H. debilis) reveals asymmetric patterns of introgression and small islands of genomic differentiation. Mol Ecol 19:521–541

    Article  CAS  PubMed  Google Scholar 

  • Stucki S, Orozco-terWengel P, Bruford MW, Colli L, Masembe C, Negrini R, Taberlet P, Joost S, NEXTGEN Consortium (2014) High performance computation of landscape genomic models integrating local indices of spatial association. arXiv:1405.7658v1 [q-bio.PE]. Accessed Nov 2014

  • Tagane S, Hiramatsu M, Okubo H (2008) Hybridization and asymmetric introgression between Rhododendron eriocarpum and R. indicum on Yakushima Island, southwest Japan. J Plant Res 121:387–395

    Article  CAS  PubMed  Google Scholar 

  • Thuiller W (2007) Biodiversity: climate change and the ecologist. Nature 448:550–552

    Article  CAS  PubMed  Google Scholar 

  • Tiffin P, Olson MS, Moyle LC (2001) Asymmetrical crossing barriers in angiosperms. Philos R Soc Lond B Biol 268:861–867

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabenau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wald A (1943) Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans Am Math Soc 54:426–482

    Article  Google Scholar 

  • Wu CI (2001) The genic view of the process of speciation. J Evol Biol 14:851–865

    Article  Google Scholar 

  • Zulliger D, Schnyder E, Gugerli F (2013) Are adaptive loci transferable across genomes of related species? Outlier and environmental association analyses in Alpine Brassicaceae species. Mol Ecol 22:1626–1639

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The help of Gabriel Heine in sampling and DNA extraction, Peter Hummel for technical assistance in the molecular laboratory of C.O., and Ulrich Lautenschlager for generating the 0/1-matrix is gratefully acknowledged. Financial support for the molecular studies partly came from Bavarian Forest National Park. Comments of two anonymous reviewers improved the contribution considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Bog.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Results of a Bayesian cluster analysis based on AFLP fingerprinting using the software programme Structure (pdf file). (PDF 260 kb)

Fig. S2

Fitted genomic clines for all 59 tested loci (pdf file). (PDF 1388 kb)

Table S1

Characterisation of all 681 AFLP loci by MCHEZA, BayeScan, Samβada and introgress (xlsx file). (XLSX 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bog, M., Bässler, C. & Oberprieler, C. Lost in the hybridisation vortex: high-elevation Senecio hercynicus (Compositae, Senecioneae) is genetically swamped by its congener S. ovatus in the Bavarian Forest National Park (SE Germany). Evol Ecol 31, 401–420 (2017). https://doi.org/10.1007/s10682-017-9890-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-017-9890-7

Keywords

Navigation