Advertisement

Evolutionary Ecology

, Volume 31, Issue 4, pp 401–420 | Cite as

Lost in the hybridisation vortex: high-elevation Senecio hercynicus (Compositae, Senecioneae) is genetically swamped by its congener S. ovatus in the Bavarian Forest National Park (SE Germany)

  • Manuela BogEmail author
  • Claus Bässler
  • Christoph Oberprieler
Original Paper

Abstract

Hybridisation is an important evolutionary process. The investigation of hybridisation along elevational gradients, with their steep abiotic and biotic clines, provides insight into the adaptation and maintenance of species in adjacent habitats. The rare Senecio hercynicus and its spreading congener S. ovatus are vertically vicariant species that show hybridisation in their range overlaps. In the present study, we used AFLP fingerprinting of 689 individuals from 38 populations to analyse population structure and introgression patterns along four elevational transects (650–1350 m) in the Bavarian Forest National Park, Gemany. Subsequently, we searched for loci putatively under divergent selection that may maintain ‘pure’ species despite hybrid formation by identifying taxon-specific alleles. A maximum-likelihood based hybrid index shows that the overall genetic differentiation among all populations was very low with a vanishingly small number of pure parental individuals. Almost 75% of the investigated individuals were classified as backcrosses towards S. ovatus. The highest S. hercynicus ancestry was found in the uppermost populations of two transects. Further, we found seven taxon-specific alleles being under divergent selection that correlated with climatic variables and deviating from neutral introgression. According to our results, hybridisation of S. ovatus and S. hercynicus has reached an advanced state of genetic swamping and there seems to be no driving force that is strong enough to keep both species as different lineages. Rather, S. ovatus appears to benefit through putatively adaptive introgression.

Keywords

Amplified fragment length polymorphism (AFLP) Adaptive introgression Hybridisation Natural selection Population genomics Senecio nemorensis syngameon 

Notes

Acknowledgements

The help of Gabriel Heine in sampling and DNA extraction, Peter Hummel for technical assistance in the molecular laboratory of C.O., and Ulrich Lautenschlager for generating the 0/1-matrix is gratefully acknowledged. Financial support for the molecular studies partly came from Bavarian Forest National Park. Comments of two anonymous reviewers improved the contribution considerably.

Supplementary material

10682_2017_9890_MOESM1_ESM.pdf (260 kb)
Fig. S1 Results of a Bayesian cluster analysis based on AFLP fingerprinting using the software programme Structure (pdf file). (PDF 260 kb)
10682_2017_9890_MOESM2_ESM.pdf (1.4 mb)
Fig. S2 Fitted genomic clines for all 59 tested loci (pdf file). (PDF 1388 kb)
10682_2017_9890_MOESM3_ESM.xlsx (151 kb)
Table S1 Characterisation of all 681 AFLP loci by MCHEZA, BayeScan, Samβada and introgress (xlsx file). (XLSX 151 kb)

References

  1. Abbott RJ, Brennan AC (2014) Altitudinal gradients, plant hybrid zones and evolutionary novelty. Philos Trans R Soc B 369:20130346CrossRefGoogle Scholar
  2. Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N, Boughman J, Brelsford A, Buerkle CA, Buggs R, Butlin RK, Dieckmann U, Eroukhmanoff F, Grill A, Cahan SH, Hermansen JS, Hewitt G, Hudson AG, Jiggins C, Jones J, Keller B, Marczewski T, Mallet J, Martinez-Rodriguez P, Möst M, Mullen S, Nichols R, Nolte AW, Parisod C, Pfennig K, Rice AM, Ritchie MG, Seifert B, Smadja CM, Stelkens R, Szymura JM, Väinölä R, Wolf JBW, Zinner D (2013) Hybridization and speciation. J Evol Biol 26:229–246CrossRefPubMedGoogle Scholar
  3. Antao T, Beaumont MA (2011) Mcheza: a workbench to detect selection using dominant markers. Bioinformatics 27:1717–1718CrossRefPubMedGoogle Scholar
  4. Arnold ML, Tang S, Knapp SJ, Martin NH (2010) Asymmetric introgressive hybridisation among Louisiana Iris species. Genes 1:9–22CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baack EJ, Rieseberg LH (2007) A genomic view of introgression and hybrid speciation. Curr Opin Genet Dev 17:513–518CrossRefPubMedPubMedCentralGoogle Scholar
  6. Balao F, García-Castaño JL (2014) AFLPsim: hybrid simulation and genome scan for dominant markers. R package version 0.3-3. http://cran.r-project.org/web/packages/AFLPsim/index.html. Accessed Dec 2014
  7. Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Annu Rev Ecol Syst 16:113–148CrossRefGoogle Scholar
  8. Bässler C, Förster B, Moning C, Müller J (2009) The BIOKLIM project: biodiversity research between climate change and wilding in a temperate montane forest—the conceptual framework. Waldökologie Landschaftsforschung Naturschutz 7:21–34Google Scholar
  9. Bässler C, Müller J, Hothorn T, Kneib T, Badeck F, Dziock F (2010) Estimation of the extinction risk for high-montane species as a consequence of global warming and assessment of their suitability as cross-taxon indicators. Ecol Indic 10:341–352CrossRefGoogle Scholar
  10. Beaumont MA, Balding DJ (2004) Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol 13:969–980CrossRefPubMedGoogle Scholar
  11. Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Philos R Soc Lond B Biol 263:1619–1626CrossRefGoogle Scholar
  12. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300Google Scholar
  13. Bothwell H, Bisbing S, Overgaard Therkildsen N, Crawford L, Alvarez N, Holderegger R, Manel S (2013) Identifying genetic signatures of selection in a non-model species, alpine gentian (Gentiana nivalis L.), using a landscape genetic approach. Conserv Genet 14:467–481CrossRefGoogle Scholar
  14. Brennan AC, Bridle JR, Wang AL, Hiscock SJ, Abbott RJ (2009) Adaptation and selection in the Senecio (Asteraceae) hybrid zone on Mount Etna, Sicily. New Phytol 183:702–717CrossRefPubMedGoogle Scholar
  15. Burgess KS, Morgan M, Deverno L, Husband BC (2005) Asymmetrical introgression between two Morus species (M. alba, M. rubra) that differ in abundance. Mol Ecol 14:3471–3483CrossRefPubMedGoogle Scholar
  16. Chapman MA, Hiscock SJ, Filatov DA (2013) Genomic divergence during speciation driven by adaptation to altitude. Mol Biol Evol 30:2553–2567CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dierschke H (1995) Phänologische und symphänologische Artengruppen von Blütenpflanzen in Mitteleuropa. Tuexenia 15:523–560Google Scholar
  18. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  19. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578CrossRefPubMedPubMedCentralGoogle Scholar
  20. Foll M, Gaggiotti O (2008) A genome scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fritz R (2001) Plant hybrids. In: Levin S (ed) Encyclopedia of biodiversity, vol 1. Academic Press, San Diego, pp 659–675Google Scholar
  22. Gompert Z, Buerkle CA (2009) A powerful regression-based method for admixture mapping of isolation across the genome of hybrids. Mol Ecol 18:1207–1224CrossRefPubMedGoogle Scholar
  23. Gompert Z, Buerkle CA (2010) Introgress: methods for analyzing introgression between divergent lineages. R package version 1.2.3. http://cran.r-project.org/web/packages/introgress/index.html. Accessed Sept 2014
  24. Grant BR, Grant PR (1998) Hybridization and speciation in Darwin’s finches—the role of sexual imprinting on a culturally transmitted trait. In: Howard DJ, Berlocher SH (eds) Endless forms: species and speciation. Oxford University Press, Oxford, pp 404–424Google Scholar
  25. Haig SM, Allendorf FW (2006) Hybrids and policy. In: Scott JM, Goble DD, Davis FW (eds) The endangered species act at thirty, vol 2: conserving biodiversity in human-dominated landscapes. Island Press, Washington, pp 150–163Google Scholar
  26. Hamilton JA, Lexer C, Aitkin SN (2013) Differential introgression reveals candidate genes for selection across a spruce (Picea sitchensis × P. glauca) hybrid zone. New Phytol 197:927–938CrossRefPubMedGoogle Scholar
  27. Henry P, Russello MA (2013) Adaptive divergence along environmental gradients in a climate-change-sensitive mammal. Ecol Evol 3:3906–3917CrossRefPubMedPubMedCentralGoogle Scholar
  28. Herborg J (1987) Die Variabilität und Sippenabgrenzung in der Senecio nemorensis-Gruppe (Compositae) im europäischen Teilareal. Diss Bot 107:1–262Google Scholar
  29. Herrera CM, Bazaga P (2008) Population-genomic approach reveals adaptive floral divergence in discrete populations of a hawk moth-pollinated violet. Mol Ecol 17:5378–5390CrossRefPubMedGoogle Scholar
  30. Holland BR, Clarke AC, Meudt HM (2008) Optimizing automated AFLP scoring parameters to improve phylogenetic resolution. Syst Biol 57:347–366CrossRefPubMedGoogle Scholar
  31. Holt BG, Côté IM, Emerson BC (2011) Searching for speciation genes: molecular evidence for selection associated with colour morphotypes in the Caribbean reef fish genus Hypoplectrus. PLoS ONE 6:e20394CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jacquemyn H, Brys R, Honnay O, Roldán-Ruiz I (2012) Asymmetric gene introgression in two closely related Orchis species: evidence from morphometric and genetic analyses. BMC Evol Biol 12:178CrossRefPubMedPubMedCentralGoogle Scholar
  33. James JK, Abbott RJ (2005) Recent, allopatric, homoploid hybrid speciation: the origin of Oxford ragwort, Senecio squalidus (Asteraceae), in the British Isles from a hybrid zone on Mount Etna, Sicily. Evolution 59:2533–2547CrossRefPubMedGoogle Scholar
  34. Joost S, Bonin A, Bruford MW, Després L, Conord C, Erhardt G, Taberlet P (2007) A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol 16:3955–3969CrossRefPubMedGoogle Scholar
  35. Joost S, Kalbermatten M, Bonin A (2008) Spatial analysis method (SAM): a software tool combining molecular and environmental data to identify candidate loci for selection. Mol Ecol Resour 8:957–960CrossRefPubMedGoogle Scholar
  36. Körner C (2007) The use of “altitude” in ecological research. Trends Ecol Evol 22:569–574CrossRefPubMedGoogle Scholar
  37. Legendre P, Borcard D, Blanchet FG, Dray S (2013) PCNM: MEM spatial eigenfunction and principal coordinate analyses. R package version 2.1-2/r109. http://r-forge.r-project.org/R/?group_id=195. Accessed Jan 2015
  38. Levin DA, Francisco-Ortega J, Jansen RK (1996) Hybridization and the extinction of rare species. Conserv Biol 10:10–16CrossRefGoogle Scholar
  39. Lexer C, Buerkle CA, Joseph JA, Heinze B, Fay MF (2007) Admixture in European Populus hybrid zones makes feasible the mapping of loci that contribute to reproductive isolation and trait differences. Heredity 98:74–84CrossRefPubMedGoogle Scholar
  40. Manel S, Poncet BN, Legendre P, Gugerli F, Holderegger R (2010) Common factors drive adaptive genetic variation at different spatial scales in Arabis alpina. Mol Ecol 19:3824–3835CrossRefPubMedGoogle Scholar
  41. Manel S, Gugerli F, Thuiller W, Alvarez N, Legendre P, Holderegger R, Gielly L, Taberlet P, IntraBioDiv Consortium (2012) Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Mol Ecol 21:3729–3738CrossRefPubMedPubMedCentralGoogle Scholar
  42. Meister J, Hubaishan M, Kilian N, Oberprieler C (2006) Temporal and spatial diversification of the shrub Justicia areysiana Deflers (Acanthaceae) endemic to the monsoon affected coastal mountains of the southern Arabian Peninsula. Plant Syst Evol 262:153–171CrossRefGoogle Scholar
  43. Moore WS (1977) An evaluation of narrow hybrid zones in vertebrates. Q Rev Biol 52:263–278CrossRefGoogle Scholar
  44. Nunes VL, Beaumont MA, Butlin RK, Paulo OS (2011) Multiple approaches to detect outliers in a genome scan for selection in ocellated lizards (Lacerta lepida) along an environmental gradient. Mol Ecol 20:193–205CrossRefPubMedGoogle Scholar
  45. Oberprieler C (1994) Die Senecio nemorensis-Gruppe (Compositae, Senecioneae) in Bayern. Ber Bayer Bot Ges 64:7–54Google Scholar
  46. Oberprieler C, Barth A, Schwarz S, Heilmann J (2010) Morphological and phytochemical variation, genetic structure, and phenology in an introgressive hybrid swarm of Senecio hercynicus and S. ovatus (Compositae, Senecioneae). Plant Syst Evol 286:153–166CrossRefGoogle Scholar
  47. Oberprieler C, Dietz L, Harlander C, Heilmann J (2013) Molecular and phytochemical evidence for the taxonomic integrity of Salix alba, S. fragilis, and their hybrid S. × rubens (Salicaceae) in mixed stands in SE Germany. Plant Syst Evol 299:1107–1118CrossRefGoogle Scholar
  48. Oberprieler C, Heine G, Bässler C (2015) Can divergent selection save the rare Senecio hercynicus from genetic swamping by its spreading congener S. ovatus (Compositae, Senecioneae)? Flora 210:47–59CrossRefGoogle Scholar
  49. Oberprieler C, Bog M, Berchtold B (2016) Herbivory and fitness components in an introgressive hybrid swarm of S. hercynicus and S. ovatus (Compositae, Senecioneae). Flora 220:117–124CrossRefGoogle Scholar
  50. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2014) vegan: community ecology package. R package version 2.2-0. http://cran.r-project.org/web/packages/vegan/index.html. Accessed Nov 2014
  51. Osborne OG, Batstone TE, Hiscock SJ, Filatov DA (2013) Rapid speciation with gene flow following the formation of Mt. Etna. Genome Biol Evol 5:1704–1715CrossRefPubMedPubMedCentralGoogle Scholar
  52. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  53. Poncet BN, Herrmann D, Gugerli F, Taberlet P, Holderegger R, Gielly L, Rioux D, Thuiller W, Aubert S, Manel S (2010) Tracking genes of ecological relevance using a genome scan in two independent regional population samples of Arabis alpina. Mol Ecol 19:2896–2907CrossRefPubMedGoogle Scholar
  54. Pritchard JK (2010) Documentation for structure software: version 2.3. http://pritchardlab.stanford.edu/structure_software/release_versions/v2.3.4/html/structure.html. Accessed Jan 2015
  55. Pritchard JK, Stephens M, Donelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  56. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed July 2014
  57. Raudnitschka D, Hensen I, Oberprieler C (2007) Introgressive hybridization of Senecio hercynicus and S. ovatus (Compositae, Senecioneae) along an altitudinal gradient in Harz National Park (Germany). Syst Biodivers 5:333–344CrossRefGoogle Scholar
  58. Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109CrossRefGoogle Scholar
  59. Richardson BA, Rehfeldt GE, Kim MS (2009) Congruent climate-related genecological responses from molecular markers and quantitative traits for western white pine (Pinus monticola). Int J Plant Sci 170:1120–1131CrossRefGoogle Scholar
  60. Rieseberg LH (2001) Chromosomal rearrangements and speciation. Trends Ecol Evol 16:351–358CrossRefPubMedGoogle Scholar
  61. Rogstad SH (2003) Plant DNA extraction using silica. Plant Mol Biol Rep 21:463CrossRefGoogle Scholar
  62. Scascitelli M, Whitney KD, Randell RA, King M, Buerkle CA, Rieseberg LH (2010) Genome scan of hybridizing sunflowers from Texas (Helianthus annuus and H. debilis) reveals asymmetric patterns of introgression and small islands of genomic differentiation. Mol Ecol 19:521–541CrossRefPubMedGoogle Scholar
  63. Stucki S, Orozco-terWengel P, Bruford MW, Colli L, Masembe C, Negrini R, Taberlet P, Joost S, NEXTGEN Consortium (2014) High performance computation of landscape genomic models integrating local indices of spatial association. arXiv:1405.7658v1 [q-bio.PE]. Accessed Nov 2014
  64. Tagane S, Hiramatsu M, Okubo H (2008) Hybridization and asymmetric introgression between Rhododendron eriocarpum and R. indicum on Yakushima Island, southwest Japan. J Plant Res 121:387–395CrossRefPubMedGoogle Scholar
  65. Thuiller W (2007) Biodiversity: climate change and the ecologist. Nature 448:550–552CrossRefPubMedGoogle Scholar
  66. Tiffin P, Olson MS, Moyle LC (2001) Asymmetrical crossing barriers in angiosperms. Philos R Soc Lond B Biol 268:861–867CrossRefGoogle Scholar
  67. Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabenau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wald A (1943) Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans Am Math Soc 54:426–482CrossRefGoogle Scholar
  69. Wu CI (2001) The genic view of the process of speciation. J Evol Biol 14:851–865CrossRefGoogle Scholar
  70. Zulliger D, Schnyder E, Gugerli F (2013) Are adaptive loci transferable across genomes of related species? Outlier and environmental association analyses in Alpine Brassicaceae species. Mol Ecol 22:1626–1639CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Evolutionary and Systematic Botany, Institute of Plant SciencesUniversity of RegensburgRegensburgGermany
  2. 2.General Botany and Plant Systematics, Institute of Botany and Landscape EcologyErnst Moritz Arndt UniversityGreifswaldGermany
  3. 3.Bavarian Forest National ParkGrafenauGermany

Personalised recommendations