Skip to main content

Advertisement

Log in

Identifying genetic signatures of selection in a non-model species, alpine gentian (Gentiana nivalis L.), using a landscape genetic approach

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

It is generally accepted that most plant populations are locally adapted. Yet, understanding how environmental forces give rise to adaptive genetic variation is a challenge in conservation genetics and crucial to the preservation of species under rapidly changing climatic conditions. Environmental variation, phylogeographic history, and population demographic processes all contribute to spatially structured genetic variation, however few current models attempt to separate these confounding effects. To illustrate the benefits of using a spatially-explicit model for identifying potentially adaptive loci, we compared outlier locus detection methods with a recently-developed landscape genetic approach. We analyzed 157 loci from samples of the alpine herb Gentiana nivalis collected across the European Alps. Principle coordinates of neighbor matrices (PCNM), eigenvectors that quantify multi-scale spatial variation present in a data set, were incorporated into a landscape genetic approach relating AFLP frequencies with 23 environmental variables. Four major findings emerged. 1) Fifteen loci were significantly correlated with at least one predictor variable (R 2adj  > 0.5). 2) Models including PCNM variables identified eight more potentially adaptive loci than models run without spatial variables. 3) When compared to outlier detection methods, the landscape genetic approach detected four of the same loci plus 11 additional loci. 4) Temperature, precipitation, and solar radiation were the three major environmental factors driving potentially adaptive genetic variation in G. nivalis. Techniques presented in this paper offer an efficient method for identifying potentially adaptive genetic variation and associated environmental forces of selection, providing an important step forward for the conservation of non-model species under global change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aeschimann D, Lauber K, Moser DM, Theurillat J (2004) Flora alpina, vol 2. Haupt, Berne

    Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709

    Article  PubMed  CAS  Google Scholar 

  • Alvarez N, Manel S, Schmitt T, IntraBioDiv Consortium (2012) Contrasting diffusion of quaternary gene pools across Europe: the case of the arctic-alpine Gentiana nivalis L. (Gentianaceae). Flora 207:408–413

    Article  Google Scholar 

  • Alvarez N, Thiel-Egenter C, Tribsch A et al (2009) History or ecology? Substrate type as a major driver of spatial genetic structure in Alpine plants. Ecol Lett 12:632–640

    Article  PubMed  Google Scholar 

  • Antao T, Beaumont MA (2011) MCHEZA: a workbench to detect selection using dominant markers. Bioinformatics 27:1717–1718

    Article  PubMed  CAS  Google Scholar 

  • Barton NH (2000) Genetic Hitchhiking. Philos Trans R Soc Lond B 355:1553–1562

    Article  CAS  Google Scholar 

  • Beaumont MA, Balding DJ (2004) Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol 13:969–980

    Article  PubMed  CAS  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc Royal Soc London B 263:1619–1626

    Article  Google Scholar 

  • Bellier E, Monestiez P, Durbec J-P, Candau J-N (2007) Identifying spatial relationships at multiple scales: principal coordinates of neighbor matrices (PCNM) and geostatistical approaches. Ecography 30:385–399

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc B 57:289–300

    Google Scholar 

  • Bensch S, Åkesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol 14:2899–2914

    Article  PubMed  CAS  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2005) GenBank. Nucleic Acids Res. doi:10.1093/nar/gki063

    Google Scholar 

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbor matrices. Ecol Model 153:51–68

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York

    Book  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Method Res 33:261–304

    Article  Google Scholar 

  • Coop G, Witonsky D, Di Rienzo A, Pritchard JK (2010) Using environmental correlations to identify loci underlying local adaptation. Genetics 185:1411–1423

    Article  PubMed  CAS  Google Scholar 

  • Crawford RMM (2008) Plants at the margin. Ecological limits and climate change. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493

    Article  Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  PubMed  CAS  Google Scholar 

  • Endler JA (1977) Geographic variation, speciation and clines. Princeton University Press, Princeton

    Google Scholar 

  • Excoffier L, Hofer T, Foll M (2009) Detecting loci under selection in a hierarchically structured population. Heredity 103:285–298

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed  CAS  Google Scholar 

  • Foll M, Gaggiotti O (2008) A genome scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993

    Article  PubMed  Google Scholar 

  • Fournier-Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, Wilczek AM (2011) A map of local adaptation in Arabidopsis thaliana. Science 334:86–89

    Article  PubMed  CAS  Google Scholar 

  • Gibson N, Yates CJ, Dillon R (2010) Plant communities of the ironstone ranges of South Western Australia: hotspots for plant diversity and mineral deposits. Biodiv Conserv 19:3951–3962

    Article  Google Scholar 

  • Gugerli Z, Englisch T, Niklfeld H et al (2008) Relationships among levels of biodiversity and the relevance of intraspecific diversity in conservation – a project synopsis. Perspect Plant Ecol Evol Syst 10:259–281

    Article  Google Scholar 

  • Hansen MM, Olivieri I, Waller DM, Nielsen EE (2012) The GeM Working Group. Monitoring adaptive genetic responses to environmental change. Mol Ecol. doi: 10.1111/j.1365-294X.2011.05463.x

  • Hegi G (1957) Illustrierte flora von Mittel-Europa, vol 3. Lehmanns, München

    Google Scholar 

  • Hess HE, Landolt E, Hirzel R (1972) Flora der Schweiz und angrenzender Gebiete, vol 3. Birkhäuser, Basel

    Google Scholar 

  • Hirao AS, Kudo G (2004) Landscape genetics of alpine-snowbed plants: comparisons along geographic and snowmelt gradients. Heredity 93:290–298

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann AA, Willi Y (2008) Detecting genetic responses to environmental change. Nat Rev Genet 9:421–432

    Article  PubMed  CAS  Google Scholar 

  • Holderegger R, Wagner HH (2008) Landscape genetics. Bioscience 58:199–207

    Article  Google Scholar 

  • Holderegger R, Hermann D, Poncet B et al (2008) Land ahead: using genome scans to identify molecular markers of adaptive relevance. Plant Ecol Divers 1:273–283

    Article  Google Scholar 

  • Holderegger R, Bühler D, Gugerli F, Manel S (2010) Landscape genetics of plants. Trends Plant Sci 15:675–683

    Article  PubMed  CAS  Google Scholar 

  • Hultén E, Fries M (1986) Atlas of North European vascular plants: north of the Tropic of Cancer. Koeltz, Königstein

    Google Scholar 

  • Ingvarsson PK, García MV, Hall D, Luquez V, Jansson S (2006) Clinal variation in phyB2, a candidate gene for day-length-induced growth cessation and bud set, across a latitudinal gradient in European aspen (Populus tremula). Genetics 172:1845–1853

    Article  PubMed  CAS  Google Scholar 

  • Jay F, Manel S, Alvarez N et al (2012) Forecasting changes in population genetic structure of alpine plants in response to global warming. Mol Ecol 21:2354–2368

    Article  PubMed  Google Scholar 

  • Jeffreys H (1961) The theory of probability, 3rd edn. Oxford University Press, New York, p 432

    Google Scholar 

  • Jombart T, Dray S, Dufour A-B (2009) Finding essential scales of spatial variation in ecological data: a multivariate approach. Ecography 32:161–168

    Article  Google Scholar 

  • Joost S, Bonin A, Bruford MW et al (2007) A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol 16:3955–3969

    Article  PubMed  CAS  Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, New York

    Book  Google Scholar 

  • Kozuharova E, Anchev M (2002) Floral biology, pollination ecology and breeding systems in Gentiana verna, G. utriculosa and G. nivalis (sect. Calatianae, Gentianaceae). God Sofiisk Univ St. Kliment Ohridski Biol Fak 2 Bot 92:57–71

  • Kozuharova E, Anchev ME (2006) Nastic corolla movements of nine Gentiana species (Gentianaceae), presented in the Bulgarian flora. Phytol Balcanica 12:255–265

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Manel S, Conord C. Despres L (2009) Genome scan to assess the respective role of host - plant and environmental constraints on the adaptation of a widespread insect. BMC. Evol Biol 9:288. http://www.biomedcentral.com/1471-2148/9/288

  • Manel S, Gugerli F, Thuiller W, Alvarez N, Legendre P, Holderegger R, Gielly L, Taberlet P, IntraBioDiv Consortium (2012) Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Mol Ecol 21:3729–3738

    Article  Google Scholar 

  • Manel S, Segelbacher G (2009) Perspectives and challenges in landscape genetics. Mol Ecol 18:1821–1822

    Article  PubMed  Google Scholar 

  • Manel S, Berthier P, Luikart G (2002) Detecting wildlife poaching: identifying the origin of individuals with Bayesian assignment tests and multilocus genotypes. Conserv Biol 3:650–659

    Article  Google Scholar 

  • Manel S, Joost S, Epperson B et al (2010a) Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field. Mol Ecol 19:3760–3772

    Article  PubMed  CAS  Google Scholar 

  • Manel S, Poncet NB, Legendre P, Gugerli F, Holderegger R (2010b) Common factors drive genetic variation of adaptive relevance at different spatial scales in Arabis alpina. Mol Ecol 19:3824–3835

    Article  PubMed  Google Scholar 

  • Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–117

    Article  PubMed  CAS  Google Scholar 

  • Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39:197–218

    Article  PubMed  CAS  Google Scholar 

  • Ohtani K (2000) Bootstrapping R2 and adjusted R2 in regression analysis. Econ Model 17:473–483

    Article  Google Scholar 

  • Okuda T, Noda T, Yamamoto T, Hori M, Nakaoka M (2010) Contribution of environmental and spatial processes to rocky intertidal metacommunity structure. Acta Oecol 36:413–422

    Article  Google Scholar 

  • Parisod C, Joost S (2010) Divergent selection in trailing- versus leading-edge populations of Biscutella laevigata. Ann Bot 105:655–660

    Article  PubMed  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Poncet B, Herrmann D, Gugerli F et al (2010) Tracking genes of ecological relevance using a genome scan: application to Arabis alpina. Mol Ecol 19:2896–2907

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • R Development Core Team (2008/2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (http://www.R-project.org.)

  • Schmidt PS, Serrao EA, Pearson GA et al (2008) Ecological genetics in the north Atlantic: environmental gradients and adaptation at specific loci. Ecology 89:S91–S107

    Article  PubMed  Google Scholar 

  • Schoville S, Bonin A, Francois O, Lobreaux S, Melodelima C, Manel S (2012) Adaptive genetic variation on the landscape: methods and cases. Annu Rev Ecol Evol Syst 43:23–43

    Article  Google Scholar 

  • Storz JF (2005) Using genome scans of DNA polymorphism to infer adaptive population divergence. Mol Ecol 14:671–688

    Article  PubMed  CAS  Google Scholar 

  • Taberlet P, Zimmermann NE, Englisch T et al (2012) Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecol Lett (in press)

  • Thuiller W (2007) Biodiversity: climate change and the ecologist. Nature 448:550–552

    Article  PubMed  CAS  Google Scholar 

  • Wagner HH, Fortin M-J (2005) Spatial analysis of landscapes: concepts and statistics. Ecology 86:1975–1987

    Article  Google Scholar 

  • Walther GR, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • Waples RS, Gaggiotti OE (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was made possible through the National Center for Ecological Analysis and Synthesis (NCEAS) at the University of California in Santa Barabara (Distributed Graduate Seminar on Landscape Genetics). We thank the IntraBioDiv Consortium for the use of their G. nivalis genetic data set. We are grateful to J. Bregy, D. Bühler, S. Dray, P. Legendre, the Cottonwood Ecology Group, and two anonymous reviewers for thoughtful discussions and comments on earlier versions of the manuscript. NA is funded by the Swiss National Science Foundation (Ambizione fellowship PZ00P3-126624). SM was supported by the Institut Universitaire de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Bothwell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 681 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bothwell, H., Bisbing, S., Therkildsen, N.O. et al. Identifying genetic signatures of selection in a non-model species, alpine gentian (Gentiana nivalis L.), using a landscape genetic approach. Conserv Genet 14, 467–481 (2013). https://doi.org/10.1007/s10592-012-0411-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-012-0411-5

Keywords

Navigation