Skip to main content
Log in

The influence of imperfect matching habitat choice on evolution in source–sink environments

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Studies of evolution in source–sink environments can illuminate when to expect niche conservatism, versus niche evolution. A species can persist in habitats outside its ecological niche (sinks, where mean fitness <1), given recurrent immigration from source habitats within the niche. Persistence of this demographic asymmetry among habitats over many generations (despite recurrent exposure of a species to the sink habitat) is tantamount to niche conservatism. We have previously shown that given genetic variation in a trait determining fitness in both source and sink, “perfect” phenotype-specific habitat choice substantially speeds up adaptation to the sink. (With perfect habitat choice, individuals disperse out of the source if and only if expected fitness in the sink is greater.) However, we observed that sometimes imperfect matching habitat choice could hamper sink adaptation. We explore this observation in more detail, using individual-based simulations for evolution of a single quantitative trait. With imperfect habitat choice and one-way adult dispersal (source to sink), adaptation in the sink can be slowed, relative to phenotype-independent dispersal. This counterintuitive result reflects directional effects of emigration on the source genetic distribution, which shifts in a way that hampers sink adaptive evolution. However, with bidirectional juvenile dispersal, imperfect habitat choice caused a strong increase in sink adaptation. Thus, the likelihood of niche conservatism or evolution may depend in a sensitive way on factors such as the life history stage, directionality, and imperfection of non-random dispersal. More broadly, our results (along with other recent results) illustrate that non-random dispersal can profoundly influence evolution via how it molds the pool of genetic variation available for selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Beltman JB, Metz JAJ (2005) Speciation: more likely through a genetic or through a learned habitat preference? Proc R Soc Lond B 272:1455–1463

    Article  CAS  Google Scholar 

  • Bradshaw AD (1991) Genostasis and the limits to evolution. Philos Trans R Soc Lond B 333:289–305

    Article  CAS  Google Scholar 

  • Brown JS, Pavlovic JB (1992) Evolution in heterogeneous environments: effects of migration on habitat specialization. Evol Ecol 6:360–382

    Article  Google Scholar 

  • Burger R, Lynch M (1995) Evolution and extinction in a changing environment: a quantitative-genetic analysis. Evolution 49:151–163

    Article  Google Scholar 

  • Darwin C (1876) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. In: Barrett PH, Freeman RB (eds) The works of Charles Darwin, vol 16. Pickering and Chatto, London

    Google Scholar 

  • de Meeus T, Michalakis Y, Renaud F, Olivieri I (1993) Polymorphism in heterogeneous environments, evolution of habitat selection and sympatric speciation. Evol Ecol 7:175–198

    Article  Google Scholar 

  • Débarre F, Ronce O, Gandon S (2013) Quantifying the effects of migration and mutation on adaptation and demography in spatially heterogeneous environments. J Evol Biol 26:1185–1202

    Article  PubMed  Google Scholar 

  • Edelaar P, Bolnick DI (2012) Non-random gene flow: an underappreciated force in evolution and ecology. Trends Ecol Evol 27:659–665

    Article  PubMed  Google Scholar 

  • Edelaar P, Siepielski AM, Clobert J (2008) Matching habitat choice causes directed gene flow: a neglected dimension in evolution and ecology. Evolution 62:2462–2472

    Article  PubMed  Google Scholar 

  • Egas M, Dieckmann U, Sabelis MW (2004) Evolution restricts the coexistence of specialists and generalists: the role of trade-off structure. Am Nat 163:518–531

    Article  PubMed  Google Scholar 

  • Fryxell JM (1997) Evolutionary dynamics of habitat use. Evol Ecol 11:687–701

    Article  Google Scholar 

  • Futuyma DJ (2010) Evolutionary constraint and ecological consequences. Evolution 64:1865–1884

    Article  PubMed  Google Scholar 

  • Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19:207–233

    Article  Google Scholar 

  • Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford series in ecology and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Gomulkiewicz R, Holt RD, Barfield M (1999) The effects of density dependence and immigration on local adaptation and niche evolution in a black-hole sink environment. Theor Popul Biol 55:283–296

    Article  CAS  PubMed  Google Scholar 

  • Hastings A (1983) Can spatial variation alone lead to selection for dispersal? Theor Popul Biol 24:244–251

    Article  Google Scholar 

  • Hedrick PW (1990) Genotypic-specific habitat selection: a new model and its application. Heredity 65:145–149

    Article  PubMed  Google Scholar 

  • Holt RD (1985) Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution. Theor Popul Biol 28:181–208

    Article  Google Scholar 

  • Holt RD (1987) Population dynamics and evolutionary processes: the manifold roles of habitat selection. Evol Ecol 1:331–347

    Article  Google Scholar 

  • Holt RD (1996a) Demographic constraints in evolution: towards unifying the evolutionary theories of senescence and niche conservatism. Evol Ecol 10:1–11

    Article  Google Scholar 

  • Holt RD (1996b) Adaptive evolution in source–sink environments: direct and indirect effects of density-dependence on niche evolution. Oikos 75:182–192

    Article  Google Scholar 

  • Holt RD (2009) Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc Natl Acad Sci USA 106:19659–19665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holt RD, Barfield M (2008) Habitat selection and niche conservatism. Isr J Ecol Evol 54:295–309

    Article  Google Scholar 

  • Holt RD, Barfield M (2011) Theoretical perspectives on the statics and dynamics of species’ borders in patchy environments. Am Nat 178:S6–S25

    Article  PubMed  Google Scholar 

  • Holt RD, Gaines M (1992) The analysis of adaptation in heterogeneous landscapes: implications for the evolution of fundamental niches. Evol Ecol 6:433–447

    Article  Google Scholar 

  • Holt RD, Gomulkiewicz R (1997) How does immigration influence local adaptation? A reexamination of a familiar paradigm. Am Nat 149:563–572

    Article  Google Scholar 

  • Holt RD, Gomulkiewicz R (2004) Conservation implications of niche conservatism and evolution in heterogeneous environments. In: Ferrière R, Dieckmann U, Couvet D (eds) Evolutionary conservation biology. Cambridge University Press, Cambridge, pp 244–264

    Chapter  Google Scholar 

  • Holt RD, Gomulkiewicz R, Barfield M (2003) The phenomenology of niche evolution via quantitative traits in a ‘black-hole’ sink. Proc R Soc Lond B 270:215–224

    Article  CAS  Google Scholar 

  • Huntley B, Bartlein PJ, Prentice JC (1989) Climatic control of the distribution and abundance of beech (Fagus) in Europe and North America. J Biogeogr 16:551–560

    Article  Google Scholar 

  • Jones JS (1980) Can genes choose habitats? Nature 286:757–758

    Article  CAS  PubMed  Google Scholar 

  • Kawecki TJ (1995) Demography of source–sink populations and the evolution of ecological niches. Evol Ecol 9:38–44

    Article  Google Scholar 

  • Kawecki TJ (2000) Adaptation to marginal habitats: contrasting influence of the dispersal rate on the fate of alleles with small and large effects. Proc R Soc Lond B 267:1315–1320

    Article  CAS  Google Scholar 

  • Kawecki TJ, Holt RD (2002) Evolutionary consequences of asymmetric dispersal rates. Am Nat 160:333–347

    Article  PubMed  Google Scholar 

  • Kimura M (1965) A stochastic model concerning the maintenance of genetic variability in quantitative characters. Proc Natl Acad Sci USA 54:731–736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kirkpatrick M, Barton NH (1997) Evolution of a species’ range. Am Nat 150:1–23

    Article  CAS  PubMed  Google Scholar 

  • Kopp M, Matuszewski S (2013) Rapid evolution of quantitative traits: theoretical perspectives. Evol Appl 7:169–191

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu J, Hull V, Morzillo AT, Wiens JA (2011) Sources, sinks, and sustainability. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Morris DW (2003) Toward an ecological synthesis: a case for habitat selection. Oecologia 136:1–13

    Article  PubMed  Google Scholar 

  • Peterson AT (2011) Ecological niche conservatism: a time-structured review of evidence. J Biogeogr 38:817–827

    Article  Google Scholar 

  • Pulliam HR (2000) On the relationship between niche and distribution. Ecol Lett 3:349–361

    Article  Google Scholar 

  • Ravigné V, Olivieri I, Dieckmann U (2004) Implications of habitat choice for protected polymorphisms. Evol Ecol Res 6:125–145

    Google Scholar 

  • Ravigné V, Dieckmann U, Olivieri I (2009) Live where you thrive: joint evolution of habitat choice and local adaptation facilitates specialization and promotes diversity. Am Nat 174:E141–E169

    Article  PubMed  Google Scholar 

  • Ronce O, Kirkpatrick M (2001) When sources becomes sinks: migrational meltdown in heterogeneous habitats. Evolution 8:1520–1531

    Article  Google Scholar 

  • Rosenzweig ML (1987) Habitat selection as a source of biological diversity. Evol Ecol 1:315–330

    Article  Google Scholar 

  • Schiffers K, Bourne EC, Lavergne S, Thuiller W, Travis JMJ (2013) Limited evolutionary rescue of locally adapted populations facing climate change. Philos Trans R Soc B 368:20120083

    Article  Google Scholar 

  • Schlaepfer MA, Runge MC, Sherman PW (2002) Ecological and evolutionary traps. Trends Ecol Evol 17:474–480

    Article  Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford

    Google Scholar 

  • Sexton JP, McIntyre PJ, Angert AL, Rice KJ (2009) Evolution and ecology of species range limits. Annu Rev Ecol Evol Syst 40:415–436

    Article  Google Scholar 

  • Stamps JA, Davis JM (2006) Adaptive effects of natal experience on habitat selection by dispersers. Anim Behav 72:1279–1289

    Article  Google Scholar 

  • Via S (2009) Natural selection in action during speciation. Proc Natl Acad Sci USA 106(Supplement 1):9939–9946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539

    Article  Google Scholar 

  • Wiens JJ, Ackerly DD, Allen AP et al (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324

    Article  PubMed  Google Scholar 

  • Yanchukov A, Proulx SR (2014) Migration-selection balance at multiple loci and selection on dominance and recombination. PLoS ONE 9:e88651

    Article  PubMed Central  PubMed  Google Scholar 

  • Yeaman S, Otto SP (2011) Establishment and maintenance of adaptive genetic divergence under migration, selection, and drift. Evolution 65:2125–2129

    Google Scholar 

  • Yeaman S, Whitlock MC (2011) The genetic architecture of adaptation under migration–selection balance. Evolution 65:1897–1911

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the University of Florida Foundation for support, P. Edelaar, C. Garcia and J. Endler for inviting us to contribute to this special issue, and the three reviewers and P. Edelaar for many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Barfield.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holt, R.D., Barfield, M. The influence of imperfect matching habitat choice on evolution in source–sink environments. Evol Ecol 29, 887–904 (2015). https://doi.org/10.1007/s10682-015-9789-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-015-9789-0

Keywords

Navigation