Skip to main content
Log in

Enemy targeting, trade-offs, and the evolutionary assembly of a tortoise beetle defense arsenal

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

In response to intense enemy selection, immature folivorous insects have evolved elaborate, multi-trait defense arsenals. How enemies foster trait diversification and arsenal assembly depends on which selective mode they impose: whether different enemies select for the same defense or exert conflicting selection on a prey species. Theory has long supposed that the selective advantage of a defense depends on its efficacy against a broad spectrum of enemies, which implies that predator selection is more diffuse than pairwise. Here, we use the multi-trait defense arsenal of the tortoise beetle, Acromis sparsa, which consists of shields, gregariousness and maternal guarding to test whether: (1) diverse enemies have selected for narrowly targeted defenses in the Acromis lineage; (2) newer traits out-performed older ones or vice versa, and; (3) if selection by different enemies results in positive (escalation) trends in defense effectiveness. Because their defenses could be modified or ablated, individuals were rendered differentially protected, and their survival was quantified in a long-term field study. Exclusion experiments evaluated defense efficacy against particular enemy guilds. Logit regression revealed that: (1)no single trait increased survival against the entire enemy suite; (2)trait efficacy was strongly correlated with a particular enemy, consistent with narrow targeting; (3)traits lacked strong cross-resistance among enemies; (4)traits performed synergistically, consistent with the idea of escalation, and; (5)traits interacted negatively to decrease survival, indicative of performance trade-offs. From collation of the phylogenetic histories of arsenal and enemy community assembly we hypothesize that older traits performed better against older enemies and that patterns of both trait and enemy accumulation are consistent with defense escalation. Trade-offs and lack of cross-resistance among defenses imply that enemy selection has been conflicting at the guild level and that negative functional interactions among defenses have fostered the evolution of a defense arsenal of increasing complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrams PA (2000) Character shifts of prey species that share predators. Am Nat 156:S45–S61

    Article  Google Scholar 

  • Abrams PA (2001) The effect of density-independent mortality on the coexistence of exploitative competitors for renewing resources. Am Nat 158:459–470

    Article  PubMed  CAS  Google Scholar 

  • Agrawal AA (2007) Macroevolution of plant defense strategies. Trends Ecol Evol 22:103–109

    Article  PubMed  Google Scholar 

  • Agrawal AA (2011) Currents trends in the evolutionary ecology of plant defence. Funct Ecol 25:420–432

    Article  Google Scholar 

  • Borowiec L, Świętojańska J (2012) World catalog of Cassidinae, url:http://www.biol.uni.wroc.pl/cassidae/katalog%20internetowy/index.htm. Wrocław, Poland

  • Botham MS, Kerfoot CJ, Louca V, Krause J (2006) The effects of different predator species on anti-predator behavior in the Trinidadian guppy, Poecilia reticulata. Naturwissenschaften 93:431–439

    Article  PubMed  CAS  Google Scholar 

  • Brady SG, Larkin L, Danforth BN (2009) Bees, ants, and stinging wasps (Aculeata). In: Hedges SB, Kumar S (eds) The time tree of life. Oxford University Press, Oxford, pp 264–269

    Google Scholar 

  • Carpenter JM, Grimaldi DA (1997) Social wasps in amber. AMNH Novitates 3203:3–7

    Google Scholar 

  • Cavender-Bares J, Kozak KH, Fine PVA, Kemberl SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715

    Article  PubMed  Google Scholar 

  • Chaboo CS (2007) Biology and phylogeny of the Cassidinae Gyllenhal sensu lato (tortoise and leaf-mining beetles) (Coleoptera: Chrysomelidae). Bull Am Mu Nat Hist 305:189–233

    Google Scholar 

  • Chaboo CS, Engel MS (2009) Eocene tortoise beetles from the green river formation in Colorado, U.S.A. (Coleoptera: Chrysomelidae: Cassidinae). Syst Entomol 34:202–209

    Article  Google Scholar 

  • Cornell HV, Hawkins BA, Hochberg ME (1998) Towards an empirically-based theory of herbivore demography. Ecol Entomol 2:340–349

    Article  Google Scholar 

  • Cox ML (1996) Insect predators of the Chrysomelidae. In: Jolivet PHA, Cox ML (eds) Chrysomelidae biology, vol 2, ecological studies. SPB Academic Publishing, Amsterdam, pp 23–91

    Google Scholar 

  • Cuignet M, Windsor D, Reardon J, Hance T (2008) The diversity and specificity of parasitoids attacking neotropical tortoise beetles (Chrysomelidae, Cassidinae). In: Jolivet P, Santiago-Blay J, Schmitt M (eds) Research on Chrysomelidae, 1. Brill Publishers, Leiden, pp 345–367

    Google Scholar 

  • Dlussky GM, Rasnitsyn AP (2003) Ants (Hymenoptera: Formicidae) of Formation Green River and some other Middle Eocene deposits of North America. Russ Entomol J 11:411–436

    Google Scholar 

  • Dyer LA, Bowers MD (1996) The importance of sequestered iridoid glycosides as a defense against an ant predator. J Chem Ecol 22:1527–1539

    Article  CAS  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Evans LE, Schmidt JO (1991) Insect defenses adaptive mechanisms of prey and predators. State University of New York Press, Albany

    Google Scholar 

  • Farrell BD (1998) ‘‘Inordinate Fondness’’ explained: why are there so many beetles? Science 281:555–559

    Google Scholar 

  • Farrell BD, Sequeira AS (2004) Evolutionary rates in the adaptive radiation of beetles on plants. Evolution 58:1984–2001

    Google Scholar 

  • Futuyma DJ, Slatkin M (1983) Introduction. In: Futuyma DJ, Slatkin M (eds) Coevolution. Sinauer Associates, MA, pp 1–13

    Google Scholar 

  • Gentry GL, Dyer LA (2002) On the conditional nature of neotropical caterpillar defenses against their natural enemies. Ecology 83:3108–3119

    Article  Google Scholar 

  • Gómez NE, Witte L, Hartmann T (1999) Chemical defense in a tortoise beetle: essential oil composition of larval fecal shields of Eurypedus nigrosignata and its host plant Cordia curassavica. J Chem Ecol 25:1007–1027

    Article  Google Scholar 

  • Grimaldi DA (1995) The age of Dominican amber. In: Anderson KB, Crelling JC (eds) Amber, resinites, and fossil resins. Am Chem Soc Symp 617:203–215

  • Grimaldi DA, Engel MS (2005) Evolution of the insects. Cambridge University Press, Cambridge

    Google Scholar 

  • Gross P (1993) Insect behavioral and morphological defenses against parasitoids. Ann Rev Entomol 38:251–273

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge

    Google Scholar 

  • Hsiao TH, Windsor DM (1999) Host plants and the diversification of Neotropical tortoise beetles (Coleoptera: Chrysomelidae: Hispinae). In: Cox ML (ed) Advances in Chrysomelidae biology. Backhuys, Leiden, pp 85–105

    Google Scholar 

  • Hunter AF (2000) Gregariousness and repellent defenses in the survival of phytophagous insects. Oikos 91:213–224

    Article  Google Scholar 

  • Langerhans RB (2009) Trade-off between steady and unsteady swimming underlies predator-driven divergence in Gambusia affinis. J Evol Biol 22:1057–1075

    Article  PubMed  CAS  Google Scholar 

  • Lemos WP, Zanuncio JC, Serrão JE (2005) Attack behavior of Podisus rostralis (Heteroptera: Pentatomidade) adults on caterpillars of Bombyx mori (Lepidoptera: Bombycidae). Braz Arch Biol Technol 48:975–981

    Article  Google Scholar 

  • Mikolajewski DJ, Johansson F, Wohlfahrt B, Stoks R (2006) Invertebrate predation selects for the loss of a morphological antipredator trait. Evolution 60:1306–1310

    PubMed  Google Scholar 

  • Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE (2006) Phylogeny of the ants: diversification in the age of angiosperms. Science 312:101–104

    Article  PubMed  CAS  Google Scholar 

  • Morton TC, Vencl FV (1998) Larval beetles (Chrysomelidae: Criocerinae) form defense from recycled host compounds discharged as fecal wastes. J Chem Ecol 24:765–786

    Article  CAS  Google Scholar 

  • Müller C (2002) Variation in the effectiveness of abdominal shields of cassidine larvae against predators. Entomol Exp Appl 102:191–198

    Article  Google Scholar 

  • Novotny V, Basset Y, Auga J, Boen W, Dal C, Drozd P, Kasbal M, Isua B, Kutil R, Molem K (1999) Predation risk for herbivorous insects on tropical vegetation: a search for enemy-free space and time. Aust J Ecol 24:477–483

    Google Scholar 

  • Olmstead KL (1996) Cassidine defenses and natural enemies. In: Jolivet PH, Cox ML (eds) Chrysomelidae biology, vol 2: ecological studies. SPB Academic Publishing, Amsterdam, pp 3–21

    Google Scholar 

  • Olmstead KL, Denno RF (1993) Effectiveness of tortoise beetle larval shields against different predator species. Ecology 74:1394–1405

    Article  Google Scholar 

  • Pearson D (1990) The evolution of multi anti-predator characteristics as illustrated by tiger beetles (Coleoptera: Cicindelidae). Behav Ecol 73:68–79

    Google Scholar 

  • Relyea RA (2003) How prey respond to combined predators: a review and an empirical test. Ecology 84:1827–1839

    Article  Google Scholar 

  • Ruxton GD, Sherratt TN, Speed MP (2004) Avoiding attack: the evolutionary ecology of crypsis, warning signals and mimicry. Oxford University Press, Oxford

    Book  Google Scholar 

  • SAS (2009) v 9.2 The SAS Institute, Cary, North Carolina, USA

  • Schenk D, Bacher S (2002) Functional response of a generalist insect predator to one of its prey species in the field. J An Ecol 71:524–531

    Article  Google Scholar 

  • Sillén-Tullberg B, Leimar O (1988) The evolution of gregariousness in distasteful insects as a defense against predators. Am Nat 132:723–734

    Article  Google Scholar 

  • Stamp NE, Casey TM (1993) Caterpillars: Ecological and Evolutionary Constraints on Foraging. Chapman and Hall, NY

  • Stoks R, McPeek MA (2003) Predators and life histories shape Lestes damselfly assemblages along a freshwater habitat gradient. Ecology 84:1576–1587

    Article  Google Scholar 

  • Vencl FV, Schultz JC, Mumma RC, Morton TC (1999) The shield defense of a larval tortoise beetle. J Chem Ecol 25:549–566

    Article  CAS  Google Scholar 

  • Vencl FV, Nogueira-de-Sá F, Allen BJ, Windsor DM, Futuyma DJ (2005) Dietary specialization influences the efficacy of larval tortoise beetle shield defenses. Oecologia 145:409–414

    Article  Google Scholar 

  • Vencl FV, Gómez NE, Ploss K, Boland W (2009) The chlorophyll catabolite, pheophorbide a, confers predation resistance in a larval tortoise beetle shield defense. J Chem Ecol 35:281–288

    Article  PubMed  CAS  Google Scholar 

  • Vencl FV, Trillo PA, Geeta R (2011) Functional interactions among tortoise beetle larval defenses reveal trait suites and escalation. Behav Ecol Sociobiol 64:227–239

    Article  Google Scholar 

  • Vermeij GJ (1994) The evolutionary interaction among species: selection, escalation, and coevolution. Annu Rev Ecol Syst 25:219–223

    Article  Google Scholar 

  • Ward PS, Brady SG, Fisher BL, Schultz TR (2010) Phylogeny and Biogeography of Dolichoderine ants: effects of data partitioning and relict taxa on historical inference. Syst Biol 59:342–362

    Article  PubMed  CAS  Google Scholar 

  • Weirauch C, Schuh RT (2011) Systematics and evolution of Heteroptera: 25 years of progress. Annu Rev Entomol 56:487–510

    Article  PubMed  CAS  Google Scholar 

  • Wilf P, Labandeira CC, Kress WJ, Staines CL, Windsor DM, Allen AL, Johnson KR (2000) Timing the radiations of leaf beetles: hispines on gingers from latest Cretaceous to recent. Science 289:291–294

    Article  PubMed  CAS  Google Scholar 

  • Wilson EO, Hölldobler B (2005) The rise of the ants: a phylogenetic and ecological explanation. PNAS 102:7411–7414

    Article  PubMed  CAS  Google Scholar 

  • Windsor DM (1987) Natural history of a subsocial tortoise beetle, Acromis sparsa Boheman (Chrysomelidae: Cassidinae) in Panama. Psyche 94:127–150

    Article  Google Scholar 

  • Windsor DM, Riley EG, Stockwell HP (1992) An introduction to the biology and systematics of Panamanian tortoise beetles (Coleoptera: Chrysomelidae: Cassidinae). In: Quintero D, Aiello A (eds) Insects of Panama and Mesoamerica. Selected studies. Oxford University Press, New York, pp 372–391

    Google Scholar 

  • Witz BW (1990) Antipredator mechanisms in arthropods: a twenty-year literature survey. Fla Entomol 73:71–99

    Article  Google Scholar 

  • Yasuda T (1998) Role of chlorophyll content of prey diets in prey- locating behavior of generalist predatory stink bug Eocanthecona furcellata. Entomol Exp Appl 86:119–124

    Article  Google Scholar 

  • Zalucki MP, Clarke AR, Malcolm SB (2002) Ecology and behavior of first instar larval Lepidoptera. Annu Rev Entomol 47:361–393

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are most grateful to C. S. Chaboo, J. J. Wiens, and S. Pawar, who provided critical insights throughout the process. J. M. Gómez and anonymous reviewers made many useful comments in revision. Experiments and specimen collection were done under permits issued by the Authoridad Nacional del Ambiente de Panamá (ANAM). This is contribution #1209 from the Department of Ecology and Evolution at Stony Brook University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredric V. Vencl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 410 kb)

Supplementary material 2 (DOC 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vencl, F.V., Srygley, R.B. Enemy targeting, trade-offs, and the evolutionary assembly of a tortoise beetle defense arsenal. Evol Ecol 27, 237–252 (2013). https://doi.org/10.1007/s10682-012-9603-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-012-9603-1

Keywords

Navigation