Skip to main content

Landscape configuration determines gene flow and phenotype in a flightless forest-edge ground-dwelling bush-cricket, Pholidoptera griseoaptera

Abstract

Spatial configuration of habitats influences genetic structure and population fitness whereas it affects mainly species with limited dispersal ability. To reveal how habitat fragmentation determines dispersal and dispersal-related morphology in a ground-dispersing insect species we used a bush-cricket (Pholidoptera griseoaptera) which is associated with forest-edge habitat. We analysed spatial genetic patterns together with variability of the phenotype in two forested landscapes with different levels of fragmentation. While spatial configuration of forest habitats did not negatively affect genetic characteristics related to the fitness of sampled populations, genetic differentiation was found higher among populations from an extensive forest. Compared to an agricultural matrix between forest patches, the matrix of extensive forest had lower permeability and posed barriers for the dispersal of this species. Landscape configuration significantly affected also morphological traits that are supposed to account for species dispersal potential; individuals from fragmented forest patches had longer hind femurs and a higher femur to pronotum ratio. This result suggests that selection pressure act differently on populations from both landscape types since dispersal-related morphology was related to the level of habitat fragmentation. Thus observed patterns may be explained as plastic according to the level of landscape configuration; while anthropogenic fragmentation of habitats for this species can lead to homogenization of spatial genetic structure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Anderson CD, Epperson BK, Fortin MJ, Holderegger R, James PMA, Rosenberg MS, Scribner KT, Spear S (2010) Considering spatial and temporal scale in landscape-genetic studies of gene flow. Mol Ecol 19:3565–3575

    PubMed  Article  Google Scholar 

  2. Arens P, Wernke-Lenting JH, Diekötter T, Rothenbühler C, Speelmans M, Hendrickx F, Smulders MJM (2005) Isolation and characterization of microsatellite loci in the dark bush cricket, Pholidoptera griseoaptera (Tettigoniidae). Mol Ecol Notes 5:413–415

    Article  CAS  Google Scholar 

  3. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, Université de Montpellier II, Montpellier

  4. Belovsky GE, Slade JB (1993) The role of vertebrate and invertebrate predators in a grasshopper community. Oikos 68:193–201

    Article  Google Scholar 

  5. Berggren Å, Carlson A, Kindvall O (2001) The effect of landscape composition on colonization success, growth rate and dispersal in introduced bush-crickets Metrioptera roeseli. J Anim Ecol 70:663–670

    Article  Google Scholar 

  6. Berggren Å, Birath B, Kindvall O (2002) Effect of corridors and habitat edges on dispersal behavior, movement rates, and movement angles in Roesel’s bush-cricket (Metrioptera roeseli). Conserv Biol 16:1562–1569

    Article  Google Scholar 

  7. Berteaux D, Réale D, McAdam AG, Boutin S (2004) Keeping pace with fast climate change: can arctic life count on evolution? Integr Comp Biol 44:140–151

    PubMed  Article  Google Scholar 

  8. Bonte D, Hovestadt T, Poethke HJ (2010) Evolution of dispersal polymorphism and local adaptation of dispersal distance in spatially structured landscapes. Oikos 119:560–566

    Article  Google Scholar 

  9. Bonte D, van Dyck H, Bullock JM, Coulon A, Delgado M, Gibbs M, Lehouck V, Matthysen E, Mustin K, Saastamoinen M, Schtickzelle N, Stevens VM, Vandewoestijne S, Baguette M, Barton K, Benton TG, Chaput-Bardy A, Clobert J, Dytham C, Hovestadt T, Meier CM, Palmer SCF, Turlure C, Travis JMJ (2011) Costs of dispersal. Biol Rev doi. doi:10.1111/j.1469-185X.2011.00201.x

    Google Scholar 

  10. Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225

    PubMed  Article  Google Scholar 

  11. Brouwers NC, Newton AC (2009) The influence of habitat availability and landscape structure on the distribution of wood cricket (Nemobius sylvestris) on the Isle of Wight, UK. Landscape Ecol 24:199–212

    Article  Google Scholar 

  12. Brouwers NC, Newton AC (2010) The influence of barriers and orientation on the dispersal ability of wood cricket (Nemobius sylvestris) (Orthoptera: Gryllidae). J Insect Conserv 14:313–317

    Article  Google Scholar 

  13. Brouwers NC, Newton AC, Bailey S (2011) The dispersal ability of wood cricket (Nemobius sylvestris) (Orthoptera: Gryllidae) in a wooded landscape. Eur J Entomol 108:117–125

    Google Scholar 

  14. Burrows M, Morris O (2003) Jumping and kicking in bush crickets. J Exp Biol 206:1035–1049

    PubMed  Article  Google Scholar 

  15. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    PubMed  Article  CAS  Google Scholar 

  16. Chevin L-M, Lande R (2011) Adaptation to marginal habitats by evolution of increased phenotypic plasticity. J Evol Biol 24:1462–1476

    PubMed  Article  Google Scholar 

  17. Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113

    PubMed  Article  CAS  Google Scholar 

  18. Crawford NG (2010) SMOGD: software for the measurement of genetic diversity. Mol Ecol Res 10:556–557

    Article  Google Scholar 

  19. Detzel P (1998) Die Heuschrecken Baden Württembergs. Verlag Eugen Ulmer GmbH & Co, Stuttgart

    Google Scholar 

  20. DeWitt TJ, Scheiner SM (2004) Phenotypic plasticity. Functional and conceptual approaches. Oxford University Press, New York, NY

    Google Scholar 

  21. Diekötter T, Csencsics D, Rothenbühler C, Billeter R, Edwards PJ (2005) Movement and dispersal patterns in the bush cricket Pholidoptera griseoaptera: the role of developmental stage and sex. Ecol Entomol 30:419–427

    Article  Google Scholar 

  22. Diekötter T, Speelmans M, Dusoulier F, Van Wingerden WKRE, Malfait JP, Crist TO, Edwards PJ, Dietz H (2007) Effects of landscape structure on movement patterns of the flightless bush cricket Pholidoptera griseoaptera. Environ Entomol 36:90–98

    PubMed  Article  Google Scholar 

  23. Diekötter T, Baveco H, Arens P, Rothenbühler C, Billeter R, Csencsics D, De Filippi R, Hendrickx F, Speelmans M, Opdam P, Smulders MJM (2010) Patterns of habitat occupancy, genetic variation and predicted movement of a flightless bush cricket, Pholidoptera griseoaptera, in an agricultural mosaic landscape. Landscape Ecol 25:449–461

    Article  Google Scholar 

  24. Girvetz EH, Thorne JH, Berry AM, Jaeger JAG (2008) Integration of landscape fragmentation analysis into regional planning: a statewide multi-scale case study from California, USA. Landscape Urban Plann 86:205–218

    Article  Google Scholar 

  25. Goudet J (1995) FSTAT (vers. 1.2): a computer program to calculate F-statistics. J Hered 86:85–486

    Google Scholar 

  26. Guido M, Gianelle D (2001) Distribution patterns of four Orthoptera species in relation to microhabitat heterogeneity in an ecotonal area. Acta Oecol 22:175–185

    Article  Google Scholar 

  27. Hanski I, Eralahti C, Kankare M, Ovaskainen O, Siren H (2004) Variation in migration propensity among individuals maintained by landscape structure. Ecol Lett 7:958–966

    Article  Google Scholar 

  28. Heidinger IMM, Hein S, Bonte D (2010) Patch connectivity and sand dynamics affect dispersal-related morphology of the blue-winged grasshopper Oedipoda caerulescens in coastal grey dunes. Insect Cons Divers 3:205–212

    Google Scholar 

  29. Hein S, Gombert J, Hovestadt T, Poethke H-J (2003) Movement patterns of the bush cricket Platycleis albopunctata in different types of habitat: matrix is not always matrix. Ecol Entomol 28:432–438

    Article  Google Scholar 

  30. Holzhauer SIJ, Ekschmitt K, Sander AC, Dauber J, Wolters V (2006) Effect of historic landscape change on the genetic structure of the bush-cricket Metrioptera roeseli. Landscape Ecol 21:891–899

    Article  Google Scholar 

  31. Humbert JY, Ghazoul J, Richner N, Walter T (2010) Hay harvesting causes high orthopteran mortality. Agri Ecosys Enviro 139:522–527

    Article  Google Scholar 

  32. Jaquiéry J, Broquet T, Hirzel AH, Yearsley J, Perrin N (2011) Inferring landscape effects on dispersal from genetic distances: how far can we go? Mol Ecol 20:692–705

    PubMed  Article  Google Scholar 

  33. Jordan F, Baldi A, Orci KM, Racz I, Varga Z (2003) Characterizing the importance of habitat patches and corridors in maintaining the landscape connectivity of a Pholidoptera transsylvanica (Orthoptera) metapopulation. Landscape Ecol 18:83–92

    Article  Google Scholar 

  34. Jost L (2008) G ST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    PubMed  Article  Google Scholar 

  35. Keller I, Nentwig W, Largiader CR (2004) Recent habitat fragmentation due to roads can lead to significant genetic differentiation in an abundant flightless ground beetle. Mol Ecol 13:2983–2994

    PubMed  Article  CAS  Google Scholar 

  36. Kindvall O (1999) Dispersal in a metapopulation of the bush cricket, Metrioptera bicolor (Orthoptera: Tettigoniidae). J Anim Ecol 68:172–185

    Article  Google Scholar 

  37. Kindvall O, Petersson A (2000) Consequences of modelling interpatch migration as a function of patch geometry when predicting metapopulation extinction risk. Ecol Model 129:101–109

    Article  Google Scholar 

  38. Lange R, Durka W, Holzhauer SIJ, Wolters V, Diekötter T (2010) Differential threshold effects of habitat fragmentation on gene flow in two widespread species of bush crickets. Mol Ecol 19:4936–4948

    PubMed  Article  Google Scholar 

  39. Maas S, Detzel P, Staudt A (2002) Gefährdungsanalyse der Heuschrecken Deutschlands. Verbreitungsatlas, Gefährdungseinstufung und Schutzkonzepte. Bundesamt für Naturschutz, Bonn-Bad Godesberg

  40. Manni F, Guérard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by “Monmonier’s algorithm”. Hum Biol 76:173–190

    PubMed  Article  Google Scholar 

  41. Marini L, Fontana P, Scotton M, Klimek S (2008) Vascular plant and Orthoptera diversity in relation to grassland management and landscape composition in the European Alps. J Appl Ecol 45:361–370

    Article  Google Scholar 

  42. McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: Spatial pattern analysis program for categorical maps. University of Massachusetts, Amherst

    Google Scholar 

  43. Moser B, Jaeger JAG, Tappeiner U, Tasser E, Eiselt B (2007) Modification of the effective mesh size for measuring landscape fragmentation to solve the boundary problem. Landscape Ecol 22:447–459

    Article  Google Scholar 

  44. Mousseau TA, Roff DA (1989) Adaptation to seasonality in a cricket: patterns of phenotypic and genotypic variation in body size and diapause expression along a cline in season length. Evolution 43:1483–1496

    Article  Google Scholar 

  45. Ortego J, Aguirre MP, Cordero PJ (2012) Genetic and morphological divergence at different spatiotemporal scales in the grasshopper Mioscirtus wagneri (Orthoptera: Acrididae). J Insect Conserv 16:103–110

    Article  Google Scholar 

  46. Poniatowski D, Fartmann T (2009) Experimental evidence for density-determined wing dimorphism in two bush-crickets (Ensifera: Tettigoniidae). Eur J Entomol 106:599–605

    Google Scholar 

  47. Poniatowski D, Fartmann T (2010) What determines the distribution of a flightless bush-cricket (Metrioptera brachyptera) in a fragmented landscape? J Insect Cons 14:637–645

    Article  Google Scholar 

  48. Prevedello JA, Vieira MV (2010) Does the type of matrix matter? A quantitative review of the evidence. Biodiv Conserv 19:1205–1223

    Article  Google Scholar 

  49. R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  50. Ranius T (2006) Measuring the dispersal of saproxylic insects: a key characteristic for their conservation. Popul Ecol 48:177–188

    Article  Google Scholar 

  51. Reinhardt K, Köhler G, Maas S, Detzel P (2005) Low dispersal ability and habitat specificity promote extinctions in rare but not in widespread species: the Orthoptera of Germany. Ecography 28:593–602

    Article  Google Scholar 

  52. Reinhold K (1994) Inheritance of body and testis size in the bushcricket Poecilimon veluchianus Ramme (Orthoptera; Tettigoniidae) examined by means of subspecies hybrids. Biol J Linn Soc 52:305–316

    Article  Google Scholar 

  53. Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99

    PubMed  Article  CAS  Google Scholar 

  54. Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst 38:231–253

    Article  Google Scholar 

  55. Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514

    PubMed  Article  Google Scholar 

  56. Szulkin M, Bierne N, David P (2010) Heterozygosity-fitness correlations: a time for reappraisal. Evolution 64:1202–1217

    PubMed  Google Scholar 

  57. Thomas CD (2000) Dispersal and extinction in fragmented landscapes. Proc R Soc Lond B 267:139–145

    Article  CAS  Google Scholar 

  58. Van Dyck H, Baguette M (2005) Dispersal behaviour in fragmented landscapes: routine or special movements? Basic Apl Ecol 6:535–545

    Article  Google Scholar 

  59. van Oosterhout C, Hutchinson W, Wills D, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  60. Vandewoestijne S, Schtickzelle N, Baguette M (2008) Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation. BMC Biol 6:46

    PubMed  Article  Google Scholar 

  61. Walsh S, Metzger D, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513

    PubMed  CAS  Google Scholar 

  62. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  63. Whitman DW (2008) The significance of body size in the Orthoptera: a review. J Orthop Res 17:117–134

    Article  Google Scholar 

  64. Whitman DW, Ananthakrishnan TN (2009) Phenotypic plasticity in insects. Mechanisms and consequences. Science Publishers, Enfield

    Book  Google Scholar 

  65. Zar JH (1999) Biostatistical Analysis. Prentice Hall, NJ

    Google Scholar 

Download references

Acknowledgments

We are deeply grateful to two anonymous reviewers for their extensive and useful comments on an earlier version of the manuscript. This work was funded by Slovak Research and Development Agency (APVV-0497-10) and Slovak Scientific Grant Agency (VEGA 2/0157/11).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Kaňuch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kaňuch, P., Jarčuška, B., Schlosserová, D. et al. Landscape configuration determines gene flow and phenotype in a flightless forest-edge ground-dwelling bush-cricket, Pholidoptera griseoaptera . Evol Ecol 26, 1331–1343 (2012). https://doi.org/10.1007/s10682-012-9571-5

Download citation

Keywords

  • Population genetics
  • Habitat connectivity
  • Woodland
  • Movement behaviour
  • Orthoptera