Skip to main content

Advertisement

Log in

Regional patterns of evolutionary turnover in Neogene coral reefs from the central Indo-West Pacific Ocean

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

The Indo-Pacific is an area of intense ecological interest, not least because of the region’s rich biodiversity. Important insights into the origins, evolutionary history, and maintenance of Indo-Pacific reef faunas depend upon the analysis of faunal occurrences derived from detailed stratigraphic sections. We investigated Neogene origination and extinction patterns derived from a combination of new coral occurrences and previously published records from the central Indo-West Pacific Ocean (cIWP, Indonesia, Papua New Guinea and Fiji). Two faunal turnover events were observed. In the first, an increase in generic richness of Scleractinia from the cIWP during the middle Miocene (17–14 Ma) coincided with both large-scale sea level fluctuations and the great Mid-Miocene collision event. We raise the hypothesis that Mid-Miocene origination was facilitated by habitat and population fragmentation associated with tectonism and sea level fall. The second, subsequent, turnover event was characterized by an overall lowering of generic diversity throughout the late Miocene and Pliocene (7–3 Ma), and was followed by a pronounced pulse of extinction at the Pliocene–Pleistocene boundary (~2.6 Ma). With the exception of the onset of Pleistocene sea-level cycles and the onset of northern hemisphere glaciation around 2.5 Ma, which might explain increased extinction during this time interval, there are no tectonic, eustatic, climatic or oceanographic events that neatly coincide with this second episode of Neogene coral taxonomic turnover. Our results reveal a total of 62 genera, including synonyms, from the Miocene to the Pleistocene. Neither episode of turnover among coral genera is exactly coincident with turnover in the Atlantic thus regional environmental change is found to drive Neogene reef dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barber PH (2009) The challenge of understanding the coral triangle. J Biogeogr 36:1845–1846

    Article  Google Scholar 

  • Baron-Szabo RC (2006) Corals of the K/T-boundary: scleractinian corals of the suborders Astrocoeniina, Faviina, Rhipidogyrina and Amphiastraeina. J Syst Palaeontol 4(1):1–108

    Article  Google Scholar 

  • Bromfield K, Renema W (2011) Comparison of Sr/Sr isotope and biostratigraphic ages of uplifted fossil reefs in the Indo-Pacific: Indonesia, Papua New Guinea and Fiji. Aust J Earth Sci 58(1):61–87

    Article  CAS  Google Scholar 

  • Budd AF (2000) Diversity and extinction in the cenozoic history of Caribbean reefs. Coral Reefs 19(1):25–35

    Article  Google Scholar 

  • Budd AF, Johnson KG (1999) Origination preceding extinction during late cenozoic turnover of Caribbean reefs. Paleobiology 25(2):188–200

    Google Scholar 

  • Budd AF, Stemann TA, Johnson KG (1994) Stratigraphic distributions of Neogene to Recent Caribbean reef corals: a new compilation. J Paleontol 68:951–959

    Google Scholar 

  • Budd AF, Johnson KG, Stemann TA (1996) Plio-pleistocene turnover and extinctions in the Caribbean reef-coral fauna. In: Jackson JBC, Budd AF, Coates A (eds) Evolution and environment in tropical America. The University of Chicago Press, Chicago, pp 168–204

    Google Scholar 

  • Budd AF, Petersen R, McNeill DF (1998) Stepwise faunal change during evolutionary turnover: a case study from the Neogene of Curacao, Netherlands Antilles. Palaios 13:170–188

    Article  Google Scholar 

  • Budd AF, Foster CTJ, Adrain T, Dawson JP (2006) Neogene marine biota of tropical America. World wide website at http://nmita.geology.uiowa.edu

  • Bunje PME, Lindberg DR (2007) Lineage divergence of a freshwater snail clade associated with post-Tethys marine basin development. Mol Phylogenet Evol 42(2):373–387

    Article  PubMed  CAS  Google Scholar 

  • Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  • Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43(4):783–791

    Article  PubMed  CAS  Google Scholar 

  • Chao A, Hwang W-H, Chen Y-C, Kuo C-Y (2000) Estimating the number of shared species in two communities. Statistica Sinica 10:227–246

    Google Scholar 

  • Charlton TR (2000) Tertiary evolution of the eastern Indonesian collision complex. J Asian Earth Sci 18(5):603–631

    Article  Google Scholar 

  • Chazdon RL, Colwell RK, Denslow JS, Guariguata MR (1998) Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of NE Costa Rica. In: Dallmeier F, Comiskey JA (eds) Forest biodiversity research, monitoring and modelling: conceptual background and old world case studies. Parthenon Publishing, Paris, pp 285–309

    Google Scholar 

  • Chevalier JP, Beauvis L (1987) Systematique. In: Grasse P-P (ed) Traite de Zoologie: Cnidaires. Masson

  • Coates A, Jackson JBC, Collins LS, Cronin TM, Dowsett HJ, Bybell LM, Jung P, Obando JA (1992) Closure of the Isthmus of Panama: the near-shore marine record of Costa Rica and western Panama. Geol Soc Am Bull 104:814–828

    Article  Google Scholar 

  • Collins LS, Budd AF, Coates A (1996) Earliest evolution associated with closure of the tropical American Seaway. Proc Natl Acad Sci USA 93:6069–6072

    Article  PubMed  CAS  Google Scholar 

  • Colwell RK (2005) EstimateS: statistical estimation of species richness and shared species from samples. Version 7.5. user’s guide and application published at http://purl.oclc.org/estimates

  • Colwell RK, Coddingham JA (1996) Estimating terrestrial biodiversity through extrapolation. In: Hawksworth DL (ed) Biodiversity: measurement and estimation. Chapman and Hall, London

    Google Scholar 

  • Colwell RK, Mao CX, Chang J (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85(10):2717–2727

    Article  Google Scholar 

  • Dana JD (1846) Zoophytes. Volume VII of the United States exploring expedition. During the years 1838, 1839, 1840, 1841, 1842. Under the command of Charles Wilkes. Lea and Blanchard, Philadelphia

    Google Scholar 

  • Edinger EN, Risk MJ (1994) Oligocene-Miocene extinction and geographic restriction of Caribbean corals: roles of turbidity, temperature, and nutrients. Palaios 9(6):576–598

    Article  Google Scholar 

  • Edinger EN, Risk MJ (1995) Preferential survivorship of brooding corals in a regional extinction. Paleobiology 21(2):200–219

    Google Scholar 

  • Elburg MA, Van Leeuwen T, Foden J, Muhardjo (2002) Origin of geochemical variability by arc–continent collision in the Biru Area, Southern Sulawesi (Indonesia). J Petrol 43(4):581–606

    Article  CAS  Google Scholar 

  • Felix J (1898) Beitrage zur Kenntniss der Astrocoeninae. Deut geol Ges Zeitschr 1:247–256 pl 11

  • Felix J (1913) Die fossilen Anthozoen aus der Umgegend von Trinil. Palaeontographica 60:311–365

    Google Scholar 

  • Felix J (1915) Jungtertiäre und quartäre Anthozoën von Timor und Obi I. Theil. Paläontologie von Timor 2:3–45

    Google Scholar 

  • Felix J (1921) Fossile Anthozoën von Borneo. Paläontologie von Timor 9(15):1–61

    Google Scholar 

  • Filipelli GM, Flores J-A (2009) From the warm pliocene to the cold pleistocene: a tale of two oceans. Geology 37(10):959–960

    Article  Google Scholar 

  • Gerth H (1921a) Coelenterata. Sammlungen des geologischen Reichs-Museums in Leiden. Neue Folge 1(2):387–445

    Google Scholar 

  • Gerth H (1921b) Die Anthozoen der Dyas von Timor. Paläontologie von Timor 9:67–147

    Google Scholar 

  • Gerth H (1923) Die Anthozoenfauna des Jungtertiärs von Borneo. Serie 1. Sammlungen des geologischen Reichs-Museums in Leiden. Neue Folge 10:37–136

    Google Scholar 

  • Gerth H (1925) Jungtertiäre Korallen von Nias, Java und Borneo, nebst einer Uebersicht über die as dem Känozoikum des Indischen Archipels bekannten Arten. Leidsche Geologische Mededeelingen 1(1):22–82

    Google Scholar 

  • Gerth H (1930) The evolution of reefcorals during the Cenozoic period. In: Proceedings of the fourth pacific congress, Java, 1929 2(a):333–350

  • Gradstein FM, Ogg JG, Smith AG, Agterberg FP, Bleeker W, Cooper RA, Davydov V, Bibbard P, Hinnov LA, House MR, Lourens LJ, Luterbacher H-P, McArthur JM, Melchin MJ, Robb LJ, Shergold J, Villeneuve M, Wardlaw BR, Ali JR, Brinkhuis H, Hilgen FJ, Hooker J, Howarth RJ, Knoll AH, Laskar J, Monechi S, Powell J, Plumb KA, Raffi I, Rohl U, Sanfilippo A, Schmitz B, Shackleton NJ, Shields GA, Strauss H, Van Dam J, Veizer J, van Kolfschoten Th, Wilson D (2004) A geological time scale. Cambridge University Press, Cambridge

  • Hall R (2001) Cenozoic reconstructions of SE Asia and the SW Pacific: changing patterns of land and sea. In: Metcalfe I, Smith JMB, Moorwood M, Davidson ID (eds) Faunal and floral migrations and evolution in SE Asia-Australasia. Swets & Zeitlinger Publishers, Lisse, pp 35–56

    Google Scholar 

  • Hall R (2002) Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific. J Asian Earth Sci 20(4):353–434

    Article  Google Scholar 

  • Hall R, Wilson MEJ (2000) Neogene sutures in Eastern Indonesia. J Asian Earth Sci 18:781–808

    Article  Google Scholar 

  • Haq B, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea level since the Triassic. Science 235:1156–1166

    Article  PubMed  CAS  Google Scholar 

  • Harzhauser M, Piller WE, Steininger FF (2002) Circum-Mediterranean oligo-Miocene biogeographic evolution-the gastropods’ point of view. Palaeogeogr Palaeoclimatol Palaeoecol 183(1-2):103–133

    Article  Google Scholar 

  • Hoeksema BW (2007) Delineation of the Indo-Malayan centre of maximum marine biodiversity: the coral triangle. In: Renema W (ed) Biogeography, time and place: distributions, barriers and islands. Springer, Dordrecht, pp 117–178

    Chapter  Google Scholar 

  • Hoffmeister JE (1942) Fossil corals from Viti Levu, Fiji. Bernice P. Bishop Museum-Bulletin 119:154–157

  • Holbourn A, Kuhnt W, Schulz M, Erlenkeuser H (2005) Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature 438(7067):483–487

    Article  PubMed  CAS  Google Scholar 

  • Holbourn A, Kuhnt W, Schulz M, Flores J-A, Andersen N (2007) Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion. Earth Planet Sci Lett 261:534–550

    Article  CAS  Google Scholar 

  • Jackson JBC, Johnson KG (2000) Life in the last few million years. Paleobiology 26(4):221–235

    Article  Google Scholar 

  • Jackson JBC, Jung P, Coates AG, Collins LS (1995) Diversity and extinction of tropical American molluscs and emergence of the Isthmus of Panama. Science 260:1624–1626

    Article  Google Scholar 

  • Jackson JBC, Budd AF, Pandolfi JM (1996) The shifting balance of natural communities? In: Jablonski D, Erwin DH, Lipps JH (eds) Evolutionary paleobiology. The University of Chicago Press, Chicago, pp 89–122

    Google Scholar 

  • Johnson KG (2001) Middle Miocene recovery of Caribbean reef corals: new data from the Tamana formation, Trinidad. J Paleontol 75(3):513–526

    Article  Google Scholar 

  • Johnson KG, Kirby MX (2006) The Emprador limestone rediscovered: early Miocene corals from the Culebra Formation, Panama. J Paleontol 80(2):283–293

    Article  Google Scholar 

  • Johnson KG, Budd AF, Stemann TA (1995) Extinction selectivity and ecology of Neogene Caribbean reef corals. Paleobiology 21(1):52–73

    Google Scholar 

  • Jones D, Hasson P (1985) History and development of the marine invertebrate faunas separated by the Central American isthmus. In: Stehli FG, Webb S (eds) The Great American biotic interchange. Plenum Press, New York, pp 325–355

    Google Scholar 

  • Klaus JS, McNeill DF, Budd AF, Johnson KG (2008) Assessing community change in miocene to pliocene coral assemblages of the Northern Dominican Republic. In: Nehm RH, Budd AF (eds) Evolutionary stasis and change in the Dominican Republic Neogene. Springer Science + Business Media B.V.

  • Koswara A, Panggabean H, Baharuddin DS (1994) Geological map of the Bonerate Sheet, South Sulawesi, Scale 1:250,000. Geological Survey Indonesia, Bandung

  • Kuhnt W, Holbourn A, Hall R, Zuvela M, Kase R (2004) Neogene history of the Indonesian throughflow. Continent–ocean interactions within East Asian marginal seas. Geophys Monogr Ser 149:299–320

    Article  Google Scholar 

  • Lamarck JB (1801) Systeme des animaux sans vertebres. Paris

  • Lamarck JB (1816) Histoire naturelle des animaux sans vertèbres. Paris

  • Lindley D (1988) Early cainozoic stratigraphy and structure of the Gazelle Peninsula, east New Britain: an example of extensional tectonics in the New Britain arc-trench complex. Aust J Earth Sci 35:231–244

    Google Scholar 

  • Marshall CR (1990) Confidence intervals on stratigraphic ranges. Paleobiology 16(1):1–10

    Google Scholar 

  • Marshall CR (1994) Confidence intervals on stratigraphic ranges: partial relaxation of the assumption of randomly distributed fossil horizons. Paleobiology 20(4):459–469

    Google Scholar 

  • Martin K (1880) Corallia, Foraminifera. In: Martin K (ed) Die Tertiärschichten auf Java. Nach den entdeckungen von Fr. Junghuhn. Brill, Leiden, pp 132–164

    Google Scholar 

  • Michelin H (1840–1847) Iconographie zoophytologique. Description par localités et terrains des ploypiers fossiles de France. Paris

  • Milne Edwards H, Haime J (1848) Recherches sur les polypiers; deuxième mémoire. Monographie des Turbinolides. Annu Soc Natl Paris Zoölogie 3(9):211–344

    Google Scholar 

  • Mora C, Chittaro PM, Sale PF, Kritzer JP, Ludsin SA (2003) Patterns and processes in reef fish diversity. Nature 421:933–936

    Article  PubMed  CAS  Google Scholar 

  • Mudelsee M, Raymo ME (2005) Slow dynamics of the Northern Hemisphere glaciation. Paleoceanography 20:PA4022

  • Naish TR, Wilson GS (2009) Constraints on the amplitude of Mid-Pliocene (3.6–2.4 Ma) eustatic sea-level fluctuations from the New Zealand shallow-marine sediment record. Philos Trans R Soc A 367(1886):169–188

    Google Scholar 

  • O’Dea A, Jackson JBC (2009) Environmental change drove macroevolution in cupuladriid bryozoans. Proc R Soc B 276:3629–3634

    Article  PubMed  Google Scholar 

  • O’Dea A, Jackson JBC, Fortunato H, Smith T, D’Croz L, Johnson KG, Todd JA (2007) Environmental change preceded Caribbean extinction by 2 million years. Proc Natl Acad Sci USA 104(13):5501–5506

    Article  PubMed  Google Scholar 

  • Orbigny AD (1849) Note sur des polpiers fossiles. Victor Masson, Paris

    Google Scholar 

  • Osberger R (1946) Research on fossil corals from Java. Geological Dept. Faculty of Science, University of Indonesia, Bandung

    Google Scholar 

  • Pandolfi JM (1993) A review of the tectonic history of New Guinea and its significance for marine biology, vol 2. In: Proceedings of the seventh international reef symposium, pp 718–727

  • Potts DC (1983) Evolutionary disequilibrium among Indo-Pacific corals. Bull Mar Sci 33(3):619–632

    Google Scholar 

  • Quelch JJ (1886) Report on the reef-corals collected by H.M.S. challenger during the years 1873–76. Report on the scientific results of the voyage of the H.M.S. Challenger during the years 1873–76 (Zoology). no. 16, p 208

  • Ravelo AC, Andreasen DH, Lyle M, Lyle AO, Wara MW (2004) Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429:263–267

    Article  PubMed  CAS  Google Scholar 

  • Raymo ME (1994) The initiation of Northern Hemisphere glaciation. Annu Rev Earth Planet Sci 22:353–383

    Article  Google Scholar 

  • Raymo ME, Grant B, Horowitz M, Rau GH (1996) Mid-Pliocene warmth: stronger greenhouse and stronger conveyor. Mar Micropaleontol 27:313–326

    Article  Google Scholar 

  • Rebesco M, Camerlenghi A (2008) Late Pliocene margin development and mega debris flow deposits on the Antarctic continental margins: evidence of the onset of the modern Antarctic ice sheet? Palaeogeogr Palaeoclimatol Palaeoecol 260:149–167

    Article  Google Scholar 

  • Renema W, Bellwood DR, Braga JC, Bromfield K, Hall R, Johnson KG, Lunt P, Meyer CP, McMonagle LB, Morley RJ, O’Dea A, Todd JA, Wesselingh FP, Wilson ME, Pandolfi JM (2008) Hopping hotspots: global shifts in marine biodiversity. Science 321:654–657

    Article  PubMed  CAS  Google Scholar 

  • Reuss AE (1867) Über fossile Korallen der Insel Java. Reise der Oesterreichischen Fregatte Novara um die Erde in den Jahren 1857, 1858, 1859. Geologischer Theil 2:165–185

    Google Scholar 

  • Reyes-Bonilla H (2002) Checklist of valid names and synonyms of stony corals (Anthozoa: Scleractinia) from the eastern Pacific. J Nat Hist 36:1–13

    Article  Google Scholar 

  • Roberts CM, McClean CJ, Veron JEN, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Well F, Vynne C, Werner TB (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295(5558):1280–1284

    Article  PubMed  CAS  Google Scholar 

  • Rodda P (1994) Geology of Fiji. In: Stevenson AJ, Herzer RH, Ballance PF (eds) Geology and submarine resources of the Tonga-Lau-Fiji region. SOPAC technical bulletin, Suva. pp 131–151

  • Rogl F (1999) Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geologica Carpathica 50(4):339–349

    Google Scholar 

  • Rogl F, Steininger FF (1984) Neogene Paratethys, Mediterranean and Indo-Pacific seaways. In: Brenchley PJ (ed) Fossils and climate. Wiley, New York, pp 171–200

    Google Scholar 

  • Rosen BR (1984) Reef coral biogeography and climate through the late cainozoic; just islands in the sun or a critical pattern of islands. In: Brenchley PJ (ed) Fossils and climate. Wiley, New York, pp 201–262

    Google Scholar 

  • Rosen BR (1988) Progress, problems and patterns in the biostratigraphy of reef corals and other tropical marine organisms. Helgolander Meeresuntersuchungen 42:269–301

    Article  Google Scholar 

  • Rosen BR, Smith AB (1988) Tectonics from fossils? Analysis of reef-coral and sea-urchin distributions from late cretaceous to recent, using a new method. In: Audley-Charles MG, Hallam A (eds) Gondwana and Tethys. Geol Soc Lond Special Publ, pp 275–306

  • Sadler PM (2004) Quantitative biostratigraphy—achieving finer resolution in global correlation. Annu Rev Earth Planet Sci 32:187–213

    Article  CAS  Google Scholar 

  • Stehli FG, Wells JW (1971) Diversity and age patterns in hermatypic corals. Syst Zool 20:115–126

    Article  Google Scholar 

  • Sukamto R, Supriatna S (1982) The geology of the Ujung Pandang, Benteng and Sinjai quadrangles, Sulawesi. In Geological Research and Development Centre

  • Umbgrove JHF (1939) Miocene corals from flores (East Indies). Leidse Geologische Mededelingen 11:62–67

    Google Scholar 

  • Umbgrove JHF (1942) Corals from asphalt deposits of the island Buton (East Indies). Leidse Geologische Mededelingen 29–38:12–13

    Google Scholar 

  • Umbgrove JHF (1945) Corals from the upper Miocene of Tjisande, Java. In: Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen (1990), vol 48, pp 340–344

  • Umbgrove JHF (1946a) Corals from a lower Pliocene patch reef in Central Java. J Paleontol 20(6):521–542

    Google Scholar 

  • Umbgrove JHF (1946b) Evolution of reef corals in East Indies since Miocene time. Bull Am Assoc Petrol Geol 30(1):23–31

    Google Scholar 

  • Umbgrove JHF (1950) Corals from the Putjangan Beds (Lower Pleistocene) of Java. J Paleontol 24(6):637–651

    Google Scholar 

  • Vaughan TW, Wells JW (1943) Revision of the suborders families, and genera of the scleractinia. Geol Soc Am

  • Veron JEN, Kelly R (1988) Species stability in reef corals of Papua New Guinea and the Indo Pacific. Association of Australian Palaeontologists, Moorooka

    Google Scholar 

  • Veron JEN, Pichon M (1976) Scleractinia of Eastern Australia Part 1. Australian Government Printing Service, Canberra

    Google Scholar 

  • Veron JEN, Pichon M (1979) Scleractinia of Eastern Australia Part 3. Australian National University Press, Canberra

    Google Scholar 

  • Veron JEN, Pichon M (1982) Scleractinia of Eastern Australia Part 4. Australian National University Press, Canberra

    Google Scholar 

  • Veron JEN, Wallace CC (1984) Scleractinia of Eastern Australia Part 5. Australian National University Press, Canberra

    Google Scholar 

  • Veron JEN, Pichon M, Wijsman-Best M (1977) Scleractinia of Eastern Australia Part 2. Australian Government Publishing Service, Canberra

    Google Scholar 

  • Verrill AE (1865) List of polyps and corals sent by the Museum of Comparative Zoology to other institutions in exchange, with annotations. Bull Mus Compar Zool 1:29–60

    Google Scholar 

  • Wara MW, Ravelo AC, Delaney ML (2005) Permanent El Nino-like conditions during the Pliocene warm period. Science 309:758–761

    Article  PubMed  CAS  Google Scholar 

  • Warny SA, Askin RA, Hannah MJ, Mohr BAR, Raine JI, Harwood DM, Florindo F (2009) Palynomorphs from a sediment core reveal a sudden remarkably warm Antarctica during the middle Miocene. Geology 37(10):955–958

    Article  Google Scholar 

  • Wells JW (1956) Scleractinia. Pp. F328-F444. In: Moore RC, (ed) Treatise on invertebrate paleontology. Geological Society of America and University of Kansas Press

  • Wilson MEJ (1995) The Tonasa limestone formation, Sulawesi, Indonesia: development of a tertiary carbonate platform. University of London, London

    Google Scholar 

  • Wilson MEJ (2002) Cenozoic carbonates in Southeast Asia: implications for equatorial carbonate development. Sed Geol 147:295–428

    Article  CAS  Google Scholar 

  • Wilson MEJ (2008) Global and regional influences on equatorial shallow-marine carbonates during the Cenozoic. Palaeogeogr, Palaeoclimatol, Palaeoecol 265(3–4):262–274

    Article  Google Scholar 

  • Wilson MEJ, Rosen BR (1998) Implications of paucity of corals in the Paleogene of SE Asia: plate tectonics or centre of origin? In: Hall RH (ed) Biogeography and geological evolution of SE Asia. Backbuys Publishers, Leiden, pp 165–195

    Google Scholar 

  • Zachos JC, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial contributions from American Paleontology Society (Steven J. Gould Award for Paleontology 2007); Paleontological Research Institute (Student Award for Paleontology 2005); Commonwealth Scientific Research Organisation (CSIRO) Wealth form the Oceans Flagship (2005–2008); University of Queensland Joint Research Scholarship (UQJRS) 2005–2009, Centre for Marine Studies and the Australian Research Council Centre of Excellence for Coral Reef Studies. We thank the Leiden Natural History Museum for access to collections; Professor Hugh Davies and the University of Papua New Guinea for access to the Pliocene coral collection; James Zachos for access to climate data; Jim Robbins for facilitating research visas in Papua New Guinea and the Papua New Guinean Government for allowing us to conduct research in P.N.G.; Kabira Dive, New Britain for accommodation and logistical support; Dr. Suharsono, Research Centre for Oceanography, Indonesian Institute of Science (LIPI); the Indonesian Government for allowing us to conduct research in Indonesia; Sarah Grimes and the Pacific Islands Applied Geoscience Commission (SOPAC); and the Fijian Government for allowing us to conduct research in Fiji.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate Bromfield.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10682_2011_9483_MOESM1_ESM.xls

Appendix 1 Genera used to construct range charts in Figure 5, and first and last occurrences in Figure 6. Those in bold were collected and identified during this study while others are derived from published records from the cIWP. (XLS 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bromfield, K., Pandolfi, J.M. Regional patterns of evolutionary turnover in Neogene coral reefs from the central Indo-West Pacific Ocean. Evol Ecol 26, 375–391 (2012). https://doi.org/10.1007/s10682-011-9483-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-011-9483-9

Keywords

Navigation