Skip to main content
Log in

The functional significance of colouration in cetaceans

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Cetaceans show many of the classic mammalian colouration patterns, such as uniform colouration, countershading, and prominent patches of colour, all within one relatively small taxon. We collated all the functional hypotheses for cetacean colouration that have been put forward in the literature and systematically tested them using comparative phylogenetic analyses. We found that countershading is a mechanism by which smaller cetacean species may avoid being seen by their prey. We discovered that prominent markings are associated with group living, fast swimming, and ostentatious behaviour at the surface, suggesting that they function in intraspecific communication. White markings on several parts of the body seem to be involved in the capture of fish, squid, and krill. Therefore, several different selection pressures have shaped the great diversity of skin colouration seen in extant cetaceans, although background matching, disruptive colouration and interspecific communication do not appear to be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beddard FE (1895) Animal coloration; an account of the principle facts and theories relating to the colours and markings of animals, vol 2. Swan Sonnenschein, London

    Google Scholar 

  • Bretagnolle V (1993) Adaptive significance of seabird coloration: the case of procellariiforms. Amer Nat 142:141–173

    Article  CAS  Google Scholar 

  • Brodie PF (1977) Form, function and energetics of Cetacea: a discussion. In: Harrison RJ (ed) Functional anatomy of marine mammals 3. Academic Press, New York, pp 45–58

    Google Scholar 

  • Cairns DK (1986) Plumage color in pursuit-diving seabirds: why do penguins wear tuxedos. Bird Behav 6:58–65

    Article  Google Scholar 

  • Caro T (2005) The adaptive significance of coloration in mammals. Bioscience 55:125–136

    Article  Google Scholar 

  • Caro T (2009) Contrasting coloration in terrestrial mammals. Phil Trans Roy Soc B 364:537–548

    Article  Google Scholar 

  • Caro T, Stankowich T (2009) The function of contrasting pelage markings in artiodactyls. Behav Ecol 21:78–84

    Google Scholar 

  • Carwardine M (2002) Whales, dolphins and porpoises. Dorling Kindersley, London

    Google Scholar 

  • Clapham PJ (2000) The humpback whale: seasonal feeding and breeding in a baleen whale. In: Mann J, Connor RC, Tyack PL, Whitehead H (eds) Cetacean societies: field studies of dolphins and whales. University of Chicago Press, Chicago, pp 173–196

    Google Scholar 

  • Connor RC, Smolker R, Bejder L (2006) Synchrony, social behaviour and alliance affiliation in Indian Ocean bottlenose dolphins, Tursiops aduncus. Anim Behav 72:1371–1378

    Article  Google Scholar 

  • Cott HB (1940) Adaptive colouration in animals. Metheun, London

    Google Scholar 

  • Edmunds M (1974) Defence in animals: a survey of antipredator defences. Longman, Harlow, Essex

    Google Scholar 

  • Fordyce RE, de Muizon C (2001) Evolutionary history of the cetaceans: a review. In: Mazin JM, de Buffrenil V (eds) Secondary adaptations of tetrapods to life in water. Verlag Dr Friedrich Pfeil, Munich, pp 169–233

    Google Scholar 

  • Gaskin DE (1967) Luminescence in a squid Moroteuthis sp. (probably ingens Smith), and a possible feeding mechanism in the sperm whale Physeter catodon L. Tuatara 15:86–88

    Google Scholar 

  • Geisler JH, Sanders AE (2003) Morphological evidence for the phylogeny of Cetacea. J Mamm Evol 10:23–129

    Article  Google Scholar 

  • Griebel U, Peichl L (2003) Colour vision in aquatic mammals–facts and open questions. Aquat Mamm 29:18–30

    Article  Google Scholar 

  • Hailman JP (1977) Optical signals: animal communication and light. Indiana University Press, Bloomington

    Google Scholar 

  • Hanlon RT, Chiao C-C, Mathger LM, Barbosa A, Buresch KC, Chubb C (2009) Cephalopod dynamic camouflage: bridging the continuum between background matching and disruptive coloration. Phil Trans Roy Soc B 364:429–437

    Article  CAS  Google Scholar 

  • Harrison R, Bryden MM (eds) (1998) Whales, dolphins and porpoises. Facts on File, New York

    Google Scholar 

  • Herzing DL (1997) The life history of free-ranging Atlantic spotted dolphins (Stenella frontalis): age classes, color phases, and female reproduction. Mar Mamm Sci 13:576–595

    Article  Google Scholar 

  • Heyning JE (1984) Functional morphology involved in intraspecific fighting of the beaked whale, Mesoplodon carlhubbsi. Can J Ecol 62:1645–1654

    Google Scholar 

  • Heyning JE (1988) Whales past and present. In: Taylor S (ed) The world’s whales: a closer look. American Cetacean Society, San Pedro, pp 51–58

    Google Scholar 

  • Hoelzel AR (ed) (2002) Marine mammal biology: an evolutionary approach. Blackwell, Malden

  • Hohn AA, Chivers SJ, Barlow J (1985) Reproductive maturity and seasonality of male spotted dolphins, Stenella attenuata, in the eastern tropical Pacific. Mar Mamm Sci 1:273–293

    Article  Google Scholar 

  • Jabonski PG, Lasater K, Mumme RL, Borowiec M, Cygan JP, Pereira J, Sergeij E (2006) Habitat-specific sensory-exploitative signals in birds: propensity of dipteran prey to cause evolution of plumage variation in flush-pursuit insectivores. Evolution 60:2633–2642

    Google Scholar 

  • Jefferson TA, Pitman RL, Leatherwood S, Dollar MLL (1997) Developmental and sexual variation in the external appearance of Fraser’s dolphins (Lagenodelphis hosei). Aquat Mamm 23:145–153

    Google Scholar 

  • Johnsen S (2001) Hidden in plain sight: the ecology and physiology of organismal transparency. Biol Bull 201:311–318

    Article  Google Scholar 

  • Johnsen S (2002) Cryptic and conspicuous coloration in the pelagic environment. Proc Roy Soc B 269:243–256

    Article  Google Scholar 

  • Johnsen S, Widder EA, Mobley CD (2004) Propagation and perception of bioluminescence: factors affecting counterillumunation as a cryptic strategy. Biol Bull 207:1–16

    Article  PubMed  Google Scholar 

  • Kamilar JM (2009) Interspecific variation in primate countershading: effects of activity pattern, body mass, and phylogeny. Int J Primatol 30:877–891

    Article  Google Scholar 

  • Kasuya T, Miyazakin N, Dawbin WH (1974) Growth and reproduction of Stenella attenuata in the Pacific coast of Japan. Scientific Report of the Whales Research Institute 26:157–226

    Google Scholar 

  • Kiltie RA (1988) Countershading: universally deceptive or deceptively universal? Trends Ecol Evol 3:21–23

    Article  PubMed  CAS  Google Scholar 

  • Longley WH (1916) Observations upon tropical fishes and inferences from their adaptive coloration. Proc Nat Acad Sci 2:733–737

    Article  PubMed  CAS  Google Scholar 

  • Longley WH (1917) Studies upon the biological significance of animal coloration. Amer Nat 51:257–285

    Article  Google Scholar 

  • Lythgoe JN (1987) Light and vision in the aquatic environment. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer Verlag, New York

    Google Scholar 

  • Macdonald DW (ed) (2006) The encyclopedia of mammals, vol 2. Facts on File, New York

    Google Scholar 

  • Maddison WP, Maddison DR (2010) Mesquite: a modular system for evolutionary analysis. Ver. 2.72, http://mesquiteproject.org

  • Mann J, Connor RC, Tyack PL, Whitehead H (eds) (2000) Cetacean societies: field studies of dolphins and whales. University of Chicago, Chicago

    Google Scholar 

  • Marshall NJ (2000) Communication and camouflage with the same ‘bright’ colours in reef fishes. Phil Trans Roy Soc 355:1243–1248

    Article  CAS  Google Scholar 

  • McGowen MR, Spaulding M, Gatesy J (2009) Divergence date estimation and a comprehensive molecular tree of extant cetaceans. Mol Phylo Evol 53:891–906

    Article  CAS  Google Scholar 

  • Melville H (1851) Moby dick. Random House, New York

    Google Scholar 

  • Messenger SL, McGuire JA (1998) Morphology, molecules, and the phylogenetics of cetaceans. Syst Biol 47:90–124

    Article  PubMed  CAS  Google Scholar 

  • Mitchell E (1970) Pigmentation pattern in delphinid cetaceans: an essay in adaptive radiation. Can J Zool 48:717–740

    Article  Google Scholar 

  • Munz FW, McFarland WN (1977) Evolutionary adaptations of fishes to the photic environment. In: Crescitelli F (ed) Handbook of sensory physiology. Springer-Verlag, Heidelberg, pp 193–274

    Google Scholar 

  • Myrick AC, Hohn AA, Barlow J, Sloan PA (1986) Reproductive biology of female spotted dolphins, Stenella attenuate, from the eastern tropical. Pacif Fish Bull 84:247–259

    Google Scholar 

  • Norris KS, Dohl TP (1980) The structure and functions of cetacean schools. In: Herman LM (ed) Cetacean behavior: mechanisms and function. Wiley, New York, pp 211–261

    Google Scholar 

  • Norris KS, Schilt CR (1988) Cooperative societies in three-dimensional space: on the origins of aggregations, flocks, and schools, with special reference to dolphins and fish. Ethol Sociobiol 9:149–179

    Article  Google Scholar 

  • Nowak RM (2003) Walker’s marine mammals of the world. John Hopkins, Baltimore

    Google Scholar 

  • Ortolani A (1999) Spots, stripes, tail tips and dark eyes: predicting the function of carnivore colour patterns using the comparative method. Biol J Linn Soc 67:433–476

    Article  Google Scholar 

  • Ortolani A, Caro TM (1996) The adaptive significance of color patterns in carnivores: phylogenetic tests of classic hypotheses. In: Gittleman JL (ed) Carnivore behaviour, ecology and evolution. Cornell University Press, Ithaca, pp 132–188

    Google Scholar 

  • Pagel M (1994) Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc Roy Soc B 255:37–45

    Article  Google Scholar 

  • Perrin WF (1970) Color pattern of the eastern Pacific spotted porpoise Stenella graffmani; Lonnberg (Cetacea, Delphinidae). Zoologica 54:135–149

    Google Scholar 

  • Perrin WF (1972) Color patterns of spinner porpoises (Stenella CF S. longirostris) of the eastern Pacific and Hawaii, with comments on delphinid pigmentation. Fish Bull 70:983–1003

    Google Scholar 

  • Perrin WF (2009) Coloration. In: Perrin WF, Wursig B, Thewissen JGM (eds) Encyclopedia of marine mammals, 2nd edn. Elsevier, Amsterdam, pp 243–249

    Google Scholar 

  • Perrin WF, Wursig B, Thewissen JGM (eds) (2009) Encyclopedia of marine mammals, 2nd edn. Amsterdam, Elsevier

    Google Scholar 

  • Poulton EB (1890) The colours of animals. Kegan Paul Trench, Trubner, London

    Google Scholar 

  • Price SA, Bininda-Emons ORP, Gittleman JL (2005) A complete phylogeny of the whales, dolphins and even-toed hoofed mammals (Cetartiodactyla). Biol Rev 80:1–29

    Article  Google Scholar 

  • Reeves RR, Stewart BS, Clapham PJ, Powell JA (2002) Guide to marine mammals of the world. Knopf, New York

    Google Scholar 

  • Robineau D (1984) External morphology and pigmentation of Commerson’s dolphin Cephalorhynchus commersonii, particularly of those from the Kerguelen Islands, Indian Ocean. Can J Zool 62:2465–2475

    Article  Google Scholar 

  • Rosenbaum HC, Clapham PJ, Allen J, Nicol-Jenner M, Jenner C, Gonzalez F-L, Urban JR, Ladron PG, Mori K, Yamaguchi M, Baker CS (1995) Geographic variation of humpack whale Megaptera novaeangliae populations worldwide. Mar Ecol Progr Ser 124:1–7

    Article  Google Scholar 

  • Ross GJB, Cockcroft VG (1990) Comments on Australian bottlenose dolphins and the taxonomic status of Tursiops aduncus (Ehrenberg, 1832). In: Leatherwood S, Reeves RR (eds) The bottlenose dolphin. Academic Press, New York, pp 101–128

    Google Scholar 

  • Rowland HM (2009) From Abbott Thayer to the present day: what have we learned about the function of countershading? Phil Trans Roy Soc B 364:519–527

    Article  Google Scholar 

  • Ruxton GD, Sherratt TN, Speed MP (2004) Avoiding attack: the evolutionary ecology of crypsis, warning signals, and mimicry. Oxford University Press, Oxford

    Google Scholar 

  • Shirihai H, Jarrett B (2006) Whales, dolphins and other marine mammals of the world. Princeton University Press, Princeton

    Google Scholar 

  • Smolker RA, Richards AF, Connor RC, Pepper JW (1992) Sex differences in patterns of association among Indian Ocean bottlenose dolphins. Behaviour 123:38–69

    Article  Google Scholar 

  • Steeman ME, Hebsgaard MB, Fordyce RE, Ho SYW, Rabosky DL, Nielsen R, Rahbek C, Glenner H, Soensen MV, Willerslev E (2009) Radiation of extant cetaceans driven by restructuring of the oceans. Syst Biol 58:573–585

    Article  PubMed  Google Scholar 

  • Stoner CJ, Bininda-Emonds ORP, Caro T (2003a) The adaptive significance of coloration in lagomorphs. Biol J Linn Soc 79:309–328

    Article  Google Scholar 

  • Stoner CJ, Caro TM, Graham CM (2003b) Ecological and behavioral correlates of coloration in artiodactyls: systematic analyses of conventional hypotheses. Behav Ecol 14:823–840

    Article  Google Scholar 

  • Tershy BR, Wiley DN (1992) Asymmetrical pigmentation in the fin whale: a test of two feeding related hypotheses. Mar Mamm Sci 8:315–318

    Article  Google Scholar 

  • Wallace AR (1879) The protective colours of animals. Science for all 2:128–137

    Google Scholar 

  • Wallace AR (1889) Darwinism. An exposition of the theory of natural selection with some of its applications. Macmillan & Co, London

    Google Scholar 

  • Wang JY, Hung SK, Yang TA, Jefferson TA, Secchi ER (2008) Population differences in pigmentation of Indo-Pacific humpback dolphins, Sousa chinensis, in Chinese waters. Mammalia 72:302–308

    Article  Google Scholar 

  • Watkins WA, Schevill WE (1979) Aerial observation of feeding behavior in four baleen whales: Eubalaena glacialis, Balaenoptera borealis, Megaptera novaeangliae, and Balaenoptera physalus. J Mammal 60:155–163

    Article  Google Scholar 

  • Weihs D (2004) The hydrodynamics of dolphin drafting. J Biol 3:1–16

    Article  Google Scholar 

  • Wilson DE, Reeder DM (2005) Mammal species of the world: a taxonomic and geographic reference, 3rd edn. John Hopkins University Press, Baltimore

    Google Scholar 

  • Wilson RP, Ryan PG, James A, Wilson M-PT (1987) Conspicuous coloration may enhance prey capture in some piscivores. Anim Behav 35:1558–1560

    Article  Google Scholar 

  • Wursig B, Wursig M (1980) Behavior and ecology of the dusky dolphin, Lagenorhynchus obscurus, in south Atlantic. Fish Bull U.S. 77:871–890

    Google Scholar 

  • Wursig B, Kieckhefer T, Jefferson TA (1990) Visual displays for communication in cetaceans. In: Thomas JA, Kastelein RA (eds) Sensory abilities of cetaceans: laboratory and field evidence. Plenum Press, New York, pp 545–559

    Google Scholar 

  • Yablokov AV (1963) O typakh okraski kitoobraznykh. Byulleten’ Moskovskogo Obshchestva Ispytatelei Prirody. Otdel Biologischeskii 68(6):27–41 (Types of colour of the Cetacea. Bull Moscow Soc Nat Biol Dept Fish Res Board Transl Ser No. 1239)

    Google Scholar 

  • Zylinski S, Osorio D, Shohet AJ (2009) Perception of edges and visual texture in the camouflage of the common cuttlefish, Sepia officinalis. Phil Trans Roy Soc B 364:439–448

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Biological Computing and Resource Center at the University of Massachusetts, Amherst for computing resources to run the phylogenetic analyses, Hatch funding to UC Davis, and two anonymous reviewers for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Caro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10682_2011_9479_MOESM1_ESM.xls

Supplementary material 1 (XLS 59 kb). Appendix 1. Variables used in this study; see Tables 1 and 2 for meaning of numbers in the body of the appendix, – denotes missing data. Column headings: UorS, uniform or spotted; CS, countershaded; DM, distinctive mark; WH, white head; WD, white dorsum; WF, white ventral fin; Wfl, white flank, ES, eye stripe; Tr, tropical waters; Te, temperate waters; MW, murky waters; Group, group size; Inter, interspecific associations; Food, main food type (F: fish, S: squid, K: krill); Poly, polygamous; D, depth; S, speed; SB, synchronous behaviour; DM, Demonstrative behaviour; * Balaenoptera edeni or B. brydei

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caro, T., Beeman, K., Stankowich, T. et al. The functional significance of colouration in cetaceans. Evol Ecol 25, 1231–1245 (2011). https://doi.org/10.1007/s10682-011-9479-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-011-9479-5

Keywords

Navigation