Skip to main content
Log in

Mechanism of hybrid seed production in cucurbitaceous vegetables

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Cucurbits constitute the largest group of fruit vegetables, are widely distributed, and are consumed for dessert as well as vegetable purposes in tropical and subtropical parts of the world. In major cucurbitaceous vegetables, hybrid technology is exploited to increase productivity and to ward off various stresses. Furthermore, an increase in the cultivation of hybrid seeds in these vegetables has occurred in recent decades, which shows the acceptance of hybrid seeds for their improved traits. Although superior-quality hybrids are available, open-pollinated varieties and farm-saved seeds are still popular sources of seeds for cultivation among farmers due to their low cost. The critical component in hybrid seed production is the involvement of labour for emasculation and pollination which consumes the major part of the labour making the hybrid seeds much costlier. Man-days of 77.58 out of total 149.82 man-days per acre are reported to be required for pollen collection and pollination in watermelon seed production, this illustrates the involvement of labour for hybridization in seed production. However, expensive hybrid seeds can be made available to resource-poor farmers by reducing the cost of hybrid seed production. Exploitation of natural pollination control mechanisms such as utilization of gynoecy, male sterility or growth regulators, reduce the labour requirement and lessen the financial burden in such programmes. Therefore, a cost-effective hybrid seed production strategy in cucurbitaceous vegetables is imperative and is possible since cucurbitaceous vegetables are amenable to sex expression control by various mechanisms. Genic emasculation through exploitation of male sterility, gynoecy, application of chemical hybridizing agents combined with natural pollinators have been utilized in cucurbitaceous vegetables to economize hybrid seed production. The male sterile mechanism employing CGMS is the most preferred one for hybrid seed production in cucurbits. The stability of gynoecious sex expression and efficiency of chemical hybridizing agents are very much depended on the genetics and environment. This paper pertains to the different approaches and its mechanism in brief that can be used in hybrid seed production of cucurbitaceous vegetables to minimize hybrid seed costs and make hybrid seed production profitable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abd El-Hadi AH, El-Adl AMI, Horeya MF, Abdein MA (2014) Heterosis and genetic behavior of some yield and yield component traits in squash (Cucurbita pepo L.). Alex Sci Exch J 35(3):178–184

    Google Scholar 

  • Aishwarya K, Syam SRP, Syed S, Ramaiah M, Rao SG (2019) Influence of plant growth regulators and stage of application on sex expression of bitter gourd (Momordica charantia L.) cv Vk-1-Priya. Plant Arch 19(2):3655–3659

    Google Scholar 

  • Ansari AM, Chowdhary BM (2018) Effects of boron and plant growth regulators on bottle gourd (Lagenaria siceraria (Molina) Standle.). J Pharmacogn Phytochem 66:202–206

    Google Scholar 

  • Artz DR, Nault BA (2011) Performance of Apis mellifera, Bombus impatiens, and Peponapis pruinosa (Hymenoptera: Apidae) as pollinators of Pumpkin. J Econ Entomol 104:1153–1161

    Article  PubMed  Google Scholar 

  • Ashok Kumar HG, Murthy HN (2004) Effect of sugars and amino acids on regeneration from anther cultures of Cucumis sativus. Plant Cell Tiss Org Cult 78:201–205

    Article  Google Scholar 

  • Azmi WA, Samzuri N, Hatta MF, Ghazi R, Seng C (2017) Effects of stingless bee (Heterotrigona itama) pollination on greenhouse cucumber (Cucumis sativus). Malays Appl Biol J46(1):51–55

    Google Scholar 

  • Bai S, Peng Y, Cui J, Gu H, Xu L, Li Y, Xu Z, Bai S (2004) Developmental analyses reveal early arrests of the spore-bearing parts of reproductive organs in unisexual flowers of cucumber (Cucumis sativus L.). Planta 220:230–240. https://doi.org/10.1007/s00425-004-HortScience1342-2

    Article  CAS  PubMed  Google Scholar 

  • Baluchamy N, Pradeepkumar T, Mathew D, Minimol JK, Veni K (2023) Candidate gene based SSR and SNP markers for gynoecy in bitter gourd (Momordica charantia L.). Mol Biol Rep 50:1125–1132. https://doi.org/10.1007/s11033-022-08098-2

    Article  CAS  PubMed  Google Scholar 

  • Bano A, Khokhar KM (2009) Sex expression and level of phytohormones in monoecious cucumber aaffected by plant growth regulators. Sarhad J Agric 25(2):10–15

    Google Scholar 

  • Barot DC, Pawar Y, Chandhari VM, Nadoda NA (2023) Influence of plant growth regulators on morphological and flowering behaviour of bottle gourd (Lagenaria siceraria (Mol.) Standl.). J Eco-Friend Agric. https://doi.org/10.48165/jefa.2023.18.02.10

  • Behera TK (2005) Heterosis in bitter gourd. J New Seeds 6(2–3):217–221. https://doi.org/10.1300/j153v06n02_11

    Article  Google Scholar 

  • Behera TK, Dey SS, Sirohi PS (2006) DBGy-201and DBGy202: two gynoecious lines in bitter gourd (Momordica charantia L.) isolated from indigenous source. Indian J Genet 66:61–62

    Google Scholar 

  • Behera TK, Dey SS, Munshi AD, Gaikwad AB, Pal A, Singh I (2009) Sex inheritance and development of gynoecious hybrids in bitter gourd (Momordica charantia L.). Sci Hortic 120(1):130–133. https://doi.org/10.3389/fpls.2018.01555

  • Behera TK, Boopalakrishnan G, Jat GS, Munshi AD, Choudhary H, Ravindran A, Kumari S, Kumari R (2022) Deriving stable tropical gynoecious inbred lines of slicing cucumber from American pickling cucumber using MABB. Hortic Environ Biotechnol 63:273–274. https://doi.org/10.1007/s13580-021-00392-5

    Article  CAS  Google Scholar 

  • Bisui S, Layek U, Karmakar P (2020) Utilization of Indian Dammar Bee (Tetragonula irridipennis Smith) as a pollinator of Bitter Gourd. Acta Agrobot 73(1):1–7. https://doi.org/10.5586/aa.7316

    Article  Google Scholar 

  • Bommesh JC, Pitchaimuthu M, Ravishankar KV, Varalakshmi B (2019) Development and maintenance of tropical gynoecious inbred lines in cucumber (Cucumis sativus) and validation by DNA markers. Agric Res 9:161–168. https://doi.org/10.1007/s40003-019-00423-9

    Article  Google Scholar 

  • Boopalakrishnan G, Jayavel S, Behera TK, Munshi AD, Choudhary H, Singh A, Pandey M (2020) Mapping and linkage analysis of epistatic QTLs for gynoecious trait (F) in cucumber (Cucumis sativus L). J Hortic Sci Biotechnol 96:344–355. https://doi.org/10.1080/14620316.2020.1855084

    Article  CAS  Google Scholar 

  • Boualem A, Troadec C, Kovalski I, Sari MA, Perl-Treves R, Bendahmane A (2009) A conserved ethylene biosynthesis enzyme leads to andromonoecy in two Cucumis species. PLoS ONE 4:6144. https://doi.org/10.1371/journal.pone.0006144

    Article  CAS  ADS  Google Scholar 

  • Boualem A, Troadec C, Camps C, Lemhemdi A, Morin H, Sari M-A, Zagouri RF, Kovalski I, Dogimont C, Treves RP, Bendahmane A (2015) A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science 350:688–691. https://doi.org/10.1126/science.aac8370

    Article  CAS  PubMed  ADS  Google Scholar 

  • Boualem A, Lemhemdi A, Sari MA, Pignoly S, Troadec C, Abou Choucha F, Solmaz I, Sari N, Dogimont C, Bendahmane A (2016) The andromonoecious sex determination gene predates the separation of Cucumis and Citrullus Genera. PLoS ONE 11:e0155444. https://doi.org/10.1371/journal.pone.0155444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bu F, Chen H, Shi Q, Zhou Q, Gao D, Zhang Z, Huang S (2016) A major quantitative trait locus conferring subgynoecy in cucumber. Theor Appl Genet 129:97–104. https://doi.org/10.1007/s00122-015-2612-z

    Article  CAS  PubMed  Google Scholar 

  • Byers RE, Baker LR, DilleyDR, Sell HM (1972) Chemical Induction of perfect flowers on a Gynoecious Line of Muskmelon, Cucumis melo L. HortScience 7(3):2. https://doi.org/10.21273/HORTSCI.7.3.283

  • Carle RB (1997) Bisex sterility governed by a single recessive gene in Cucurbita pepo L. Rep Cucurbit Genet Coop 20:46–47

    Google Scholar 

  • Chang YN, Zhu C, Jiang J, Zhang H, Zhu JK, Duan CG (2020) Epigenetic regulation in plant abiotic stress responses. J Integr Plant Biol 62(5):563–658

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary BR, Pandey S (2016) Muskmelon genetics, breeding, and cultural practices. In: Mohammad (ed) Handbook of cucurbits: growth, cultural practices, and physiology. CRC Press, Boca Raton, pp 223–224

  • Chaurasiya J, Verma RB, Ahmad M, Adarsh A, Kumar R, Pratap T (2016) Influence of plant growth regulators on growth, sex expression and yield and quality of musk melon (Cucumis melo L.). Ecol Environ Conserv 22:39–43

    Google Scholar 

  • Chen H, Sun J, Li S, Cui Q, Zhang H, Xin F, Wang H, Lin T, Dongli G, Wang S, Li X, Wang D, Zhang Z, Xu Z, Huang S (2016) An ACC oxidase gene essential for cucumber carpel development. Mol Plant 9:1315–1327. https://doi.org/10.1016/j.molp.2016.06.018

    Article  CAS  PubMed  Google Scholar 

  • Claveria E, Garcia-Mas J, Dolcet SR (2005) Optimization of cucumber doubled haploid line production using in vitro rescue of in vivo induced parthenogenic embryos. J Am Soc Hort Sci 130(4):555–560

    Article  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Mol Biol 49:427–451

    Article  CAS  Google Scholar 

  • Dalai S, Singh MK, Soni S (2020) Yield and yield traits of cucumber (Cucumis sativus L.) as influenced by foliar application of plant growth regulators. Int J Curr Microbiol Applied Sci 9(3):121–126

    Article  CAS  Google Scholar 

  • Dasgan HY, Ozdogan AO, Abak K, Kaftanoglu O (1999) Comparison of honey bees (Apis mellifera L.) and bumble bees (Bombus terrestris) as pollinators for melon (Cucumis melo L.) grown in greenhouses. Acta Hortic 492:131–134

    Article  Google Scholar 

  • Delaplane KS, Mayer DF (2000) Crop pollination by bees. Entomol Exp Appl 99(1):127–129. https://doi.org/10.1023/A:1018931100125

    Article  Google Scholar 

  • Devi RY, Madhanakumari P (2015) Effect of plant growth regulators on flowering and yield of muskmelon (Cucumis melo L.). Plant Arch 15(2):899–901

    Google Scholar 

  • Dey SS, Behera TK, Munshi AD, Pal A (2010) Gynoecious inbred with better combining ability improves yield and earliness in bitter gourd (Momordica charantia L.). Euphytica 173:37–47

    Article  Google Scholar 

  • Dhaliwal MS, Lal T (1996) Genetics of some important characters using line x tester analysis in muskmelon. Indian J Genet Plant Breed 56:207–213

    Google Scholar 

  • Diao WP, Jia YY, Song H, Zhang XQ, Lou QF, Chen JF (2009) Efficient embryo induction in cucumber ovary culture and homozygous identification of the regenetants using SSR markers. Sci Hort 119(3):246–251

    Article  CAS  Google Scholar 

  • Dolcet SR, Claveria E, Garcia-Mas J (2006) Cucumber (Cucumis sativus L.) dihaploid line production using in vitro rescue of in vivo induced parthenogenic embryos. Acta Hort 725:837–844

    Article  Google Scholar 

  • Fazio G, Staub JE, Stevens MR (2003) Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet 107:864–874

    Article  CAS  PubMed  Google Scholar 

  • Ficcadenti N, Sestili S, Annibali S (1999) In vitro gynogenesis to induce haploid plants in melon (Cucumis melo L.). J Genet Breed 53:255–257

    Google Scholar 

  • Gaikwad AB, Saxena S, Behera TK, Archak S, Meshram SU (2014) Molecular marker to identify gynoecious lines in bitter gourd. Indian J Hortic 71(1):142–144

    Google Scholar 

  • Galazka J, Szczytt KN (2013) Review of research on haploid production in cucumber and other cucurbits. Folia Hort 25(1):67–78

    Article  Google Scholar 

  • Gao P, Sheng Y, Luan F, Ma H, Liu S (2015) RNA-Seq transcriptome profiling reveals differentially expressed genes involved in sex expression in melon. Crop Sci 55(4):1686–1695

    Article  CAS  Google Scholar 

  • Garg P, Dev R, Raj S, Patel VJK, Singh VK (2020) Influence of plant growth regulators (PGRs) on growth parameters and sex ratio in cucumber (Cucumis sativus L.). J Pharmacogn Phytochem 9(3):1658–1661

    CAS  Google Scholar 

  • Ghani MA, Amjad M, Iqbal Q, Nawaz A, Ahmad T, Haffez OBA, Abbas M (2013) Efficacy of plant growth regulators on sex expression, earliness and yield components in bitter gourd. Pak J Life Soc Sci 11(3):218–224

    Google Scholar 

  • Girek Z, Prodanovic S, Zdravkovic J, Zivanovic T, Ugrinovic M, Zdravkovic M (2013) The effect of growth regulators on sex expression in melon (Cucumis melo L.). Crop Breed Appl Biotechnol 13:165–171

    Article  Google Scholar 

  • Hayashi F, Boerner DR, Peterson CE, Sell HM (1971) The relative content of gibberellin in seedlings of gynoecious and monoecious cucumber (Cucumis sativus). Phytochemistry 10(1):57–62. https://doi.org/10.1016/s0031-9422(00)90250-4

    Article  CAS  Google Scholar 

  • Hidayatullah MT, Farooq M, Khokhar MA, Hussain SI (2012) Plant growth regulators affecting sex expression of bottle gourd (Lagenaria siceraria Molina) plants. Pak J Agric Res 25(1):50–54

    Google Scholar 

  • Honsho C, Songpol S, Takuya T, Kensuke Y, Keizo Y (2007) Effective pollination period in durian (Durio zibethinus Murr.) and the factors regulating it. Sci Hortic 111:193–196

    Article  Google Scholar 

  • Hu B, Li D, Liu X, Qi J, Gao D, Zhao S, Huang S, Sun J, Yang L (2017) Engineering nontransgenic gynoecious cucumber using an improved transformation protocol and optimized CRISPR/Cas9 system. Mol Plant 10:1575–1578. https://doi.org/10.1016/j.molp.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  • Hume RJ, Lovell PH (1981) Reduction of the cost involved in hybrid seed production of pumpkins (Cucurbita maxima D.). New Z J Exp Agric 9(2):209–210

    Google Scholar 

  • Jat GS, Munshi AD, Behra TK, Choudhary H, Dash P, Ravindran A, Kumari S (2019) Genetics and molecular mapping of gynoecious (F) locus in cucumber (Cucumis sativus L.). J Hortic Sci Biotechnol 94(1):24–32. https://doi.org/10.1080/14620316.2018.1449671

    Article  CAS  Google Scholar 

  • Jose MA, Pradeepkumar T, Reshmika PK, Deepu M, Veni K, Varun RC (2022) Characterization and maintenance of promising gynoecious bitter gourd line through hormonal regulation and micropropagation. Indian J Hortic 79(2):35–43

    Google Scholar 

  • Julier HE, Roulston TH (2009) Wild bee abundance and pollination service in cultivated pumpkins: farm management, nesting behavior and landscape effects. J Econ Entomol 102:563–573. https://doi.org/10.1603/029.102.0214

    Article  PubMed  Google Scholar 

  • Jyoti S, Patel NB, Patel JB (2016) Effect of growth regulators and stages of spray on seed yield and seed quality parameters of ridge gourd [Luffa acutangula (Roxb) L.]. J Appl Nat Sci 8(3):1551–1555. https://doi.org/10.31018/jans.v8i3.999

  • Kannan D, Aravindan S, Mishra V, Kumar P, Khan AZ (2015) Heterosis studies in ridge gourd (Luffa acutangula L. Roxb.) in an F1 hybrid involving a male-sterile line. Indian J Hortic 5(1/2):32–35

  • Kaur A, Khurana DS, Dhall RK (2016) Sex modification in cucumber (Cucumis sativus L.) under the influence of ethephon and maleic hydrazide. Int J Adv Res 4(11):2199–2205

    Article  CAS  Google Scholar 

  • Kaur A, Sharma M, Manan J, Bindu A (2017) Comparative performance of muskmelon (Cucumis melo) hybrids at farmers’ field in district Kapurthala. J Krishi Vigyan 6:24–31. https://doi.org/10.5958/2349-4433.2017.00043.5

    Article  Google Scholar 

  • Kenigsbuch D, Cohen Y (1990) The inheritance of gynoecy in muskmelon. Genome 33(3):317–320

    Article  Google Scholar 

  • Kesavan PK, More TA (1991) Use of monoecious lines in heterosis breeding muskmelon (Cucumis melo L.). Veg Sci 18:59–64

    Google Scholar 

  • Khatoon R, Moniruzzaman M, Moniruzzaman M (2019) Effect of foliar spray of GA3 and NAA on sex expression and yield of bitter gourd. Bangladesh J Agril Res 44(2):281–290

    Article  Google Scholar 

  • Kiatoko N, Pozo MI, van Oystaeyen A, van Langevelde F, Wäckers F, Kumar RS, Hundt B, Jaramillo J (2022) Effective pollination of greenhouse Galia musk melon (Cucumis melo L. var. reticulatus ser.) by afrotropical stingless bee species. J Apic Res 61(5):664–674. https://doi.org/10.1080/00218839.2021.2021641

  • Kiełkowska A, Havey JH (2011) Studies on in vitro culture of cucumber microspores. In: Proceedings of the Plant & Animal Genomes XIX conference, 15–19 January, San Diego, USA. Paper No. P871

  • Kishan TM, Srinivasan MR, Rajashree V, Thakur RK (2017) Stingless bee (Tetragonula irridipennis Smith) for pollination of greenhouse cucumber. J Entomol Zool Stud 5(4):1729–1733

    Google Scholar 

  • Knopf RR, Trebitsh T (2006) The female-specific CS-ACS1G gene of cucumber. A case of gene duplication and recombination between the nonsex-specific 1-aminocyclopropane-1-carboxylate synthase gene and a branched chain amino acid transaminase gene. Plant Cell Physiol 47:1217–1228. https://doi.org/10.1093/pcp/pcj092

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Banerjee MK, Kalloo G (2000) Male sterility: mechanisms and current status on identification, characterization and utilization in vegetables. Veg Sci 27:1–24

    Google Scholar 

  • Kumar S, Singh BD, Sinha DP, Rai M (2008) Sex expression-associated RAPD markers in pointed gourd (Trichosanthes dioica). In: Proceedings of the IXth EUCARPIA meeting on genetics and breeding of cucurbitaceae, France. May 21–24th, 2008

  • Kurtar ES, Balkaya A (2010) Production of in vitro haploid plants from in situ induced haploid embryos in winter squash (Cucurbita maxima Duchesne ex Lam.) via irradiated pollen. Plant Cell Tiss Org Cult 102(3):267–277

  • Kurtar ES, Sari N, Abak K (2002) Obtention of haploid embryos and plants through irradiated pollen technique in squash (Cucurbita pepo L.). Euphytica 127:335–344

    Article  CAS  Google Scholar 

  • Kurtar ES, Balkaya A, Ozbakir M, Ofluoglu T (2009) Induction of haploid embryo and plant regeneration via irradiated pollen technique in pumpkin (Cucurbita moschata Duchesne ex. Poir). Afr J Biotechnol 8(21):5944–5951

  • Kuzuya M, Hosoya K, Yashiro K, Tomita K, Ezura H (2003) Powdery mildew (Sphaerotheca fuliginea) resistance in melon is selectable at the haploid level. J Exp Bot 54(384):1069–1074

    Article  CAS  PubMed  Google Scholar 

  • Lai YS, Shen D, Zjang W, Zhang X, Qui Y, Wang H, Dou X, Li S, Wu Y, Song J, Ji G, Li X (2018) Temperature and photoperiod changes affect cucumber sex expression by different epigenetic regulations. BMC Plant Biol 18:268. https://doi.org/10.1186/s12870-018-1490-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal T, Vashisht V, Dhillon NPS (2007) Punjab Anmol—a new hybrid of muskmelon (Cucumis melo L.). PAU Agric Res J 44:83

    Google Scholar 

  • Latrasse D, Rodriguez-Granados NY, Veluchamy A, Mariappan KG, Bevilacqua C, Crapart N et al (2017) The quest for epigenetic regulation underlying unisexual flower development in Cucumis melo. Epigenet Chromatin 10(1):22

    Article  Google Scholar 

  • Li Z, Huang S, Liu S, Pan J, Zhang Z, Tao Q, Shi Q, Jia Z, Zhang W, Chen H, Si L, Zhu L, Cai R (2009) Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants. Genetics 182:1381–1385. https://doi.org/10.1534/genetics.109.104737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Wang S, Tao Q, Pan J, Si L, Gong Z (2012) A putative positive feedback regulation mechanism in CsACS2 expression suggests a modified model for sex determination in cucumber (Cucumis sativus L.). J Exp Bot 63:4475–4484. https://doi.org/10.1093/jxb/ers123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Sheng Y, Niu H, Li Z (2019) Gene interactions regulating sex determination in cucurbits. Front Plant Sci 10:1231. https://doi.org/10.3389/fpls.2019.01231

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Kim YJ, Müller R, Yumul RE, Liu C, Pan Y, Cao X, Goodrich J, Chen X (2011) AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins. Plant Cell 23:3654–3670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lofti M, Alan AR, Henning MJ, Jahn MM, Earle ED (2003) Production of haploid and double haploid plants of melon (Cucumis melo L.) for use in breeding for multiple virus resistance. Plant Cell Rep 21:1121–1128

    Article  Google Scholar 

  • Ma H, Luan F, Sheng Y, Gao M (2010) Inheritance and molecular mapping of andromonoecious and gynoecious sex determining genes in melon (Cucumis melo L.). Acta Hortic 871:197–200. https://doi.org/10.17660/ActaHortic.2010.871.24

  • Mahala P, Choudhary MR, Yadav TV, Singh OPGP (2014) Effect of plant growth on yield, quality and economics of bottle gourd (Lagenaria siceraria). Ann Agri-Bio-Res 191:137–139

    Google Scholar 

  • Mallinger RE, Liburd OE (2021) Pollination of Cucurbita spp. (Squash and Pumpkin) Crops in Florida. EDIS 1:7. https://doi.org/10.32473/edis-in1311-2021

  • Manzano S, Martínez C, Megías Z, Gómez P, Garrido D, Jamilena M (2011) The role of ethylene and brassinosteroids in the control of sex expression and flower development in Cucurbita pepo. J Plant Growth Regul 65:213–221. https://doi.org/10.1007/s10725-011-9589-7

    Article  CAS  Google Scholar 

  • Manzano S, Martínez C, Megías Z, Garrido D, Jamilena M (2013) Involvement of ethylene biosynthesis and signalling in the transition from male to female flowering in the monoecious Cucurbita pepo. J Plant Growth Regul 32:789–798. https://doi.org/10.1007/s00344-013-9344-6

    Article  CAS  Google Scholar 

  • Manzano S, Martínez C, García JM, Megías Z, Amilena M (2014) Involvement of ethylene in sex expression and female flower development in watermelon (Citrullus lanatus). Plant Physiol Biochem 85:96–104. https://doi.org/10.1016/j.plaphy.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  • Manzano S, Aguado E, Martínez C, Megías Z, García A, Jamilena M (2016) The ethylene biosynthesis gene CitACS4 regulates monoecy/andromonoecy in watermelon (Citrullus lanatus). PLoS ONE 11:e0154362. https://doi.org/10.1371/journal.pone.0154362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A (2009) A transponson-induced epigenetic change leads to sex determination in melon. Nature 461:1135–1138. https://doi.org/10.1038/nature08498

    Article  CAS  PubMed  ADS  Google Scholar 

  • Martínez C, Manzano S, Megías Z, Barrera A, Boualem A, Garrido D, Bendahmane A, Jamilena M (2014) Molecular and functional characterization of CpACS27A gene reveals its involvement in monoecy instability and other associated traits in squash (Cucurbita pepo L.). Planta 239:1201–1215. https://doi.org/10.1007/s00425-014-2043-0

    Article  CAS  PubMed  Google Scholar 

  • Matsumura H, Miyagi N, Taniai N, Fukushima M, Tarora K (2014) Mapping of the Gynoecy in Bitter Gourd (Momordica charantia L.) using RAD-Seq analysis. PLoS ONE 9(1):e87138

  • McCreight JD (1980) Male sterile-1: stability of expression. Rep Cucurbit Genet Coop 3:31

    Google Scholar 

  • McCreight JD, Elmstrom GW (1983) A third male sterile gene in muskmelon. Cucurbit Genet Cooper Rep 6:46

    Google Scholar 

  • Meeuwsen J (2015) Cucumber hybrid SV8975CB and parents thereof. United States. Patent number US 9167760 https://patents.google.com/patent/US9167760B2/en

  • Megharaj KC, Ajjappalavara PS, Revanappa MDC, Bommesh JC (2017) Sex manipulation in cucurbitaceous vegetables. Int J Curr Microbiol App Sci 6(9):1839–1851

    Article  Google Scholar 

  • Mehdi M, Ahmed N, Jabeen N, Khan SH, Afroza B (2012) Effect of ethrel on hybrid seed production of cucumber (Cucumis sativus L) under open and protected conditions. Asian J Agric Hortic Res 7(2):558–560

    Google Scholar 

  • Miao H, Zhang S, Wang X, Zhang Z, Li M, Mu S, Cheng Z, Zhang R, Huang S, Bingyan S, Fang Z, Zhang Z, Weng Y, Gu X (2011a) A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica 182:167–176. https://doi.org/10.1007/s10681-011-0410-5

    Article  Google Scholar 

  • Miao M, Yang X, Han X, Wang K (2011b) Sugar signaling is involved in the sex expression response of monoecious cucumber to low temperature. J Exp Bot 62:797–804

    Article  CAS  PubMed  Google Scholar 

  • Ming R, Bendahmane A, Renner SS (2011) Sex chromosomes in land plants. Annu Rev Plant Biol 62:485–514

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Behera TK, Munshi AD, Gaikwad K, Mohapatra T (2014) Identification of RAPD marker associated with gynoecious trait (gy-1 gene) in bitter gourd (Momordica charantia L.). Aust J Crop Sci 8(5):706–710

    CAS  Google Scholar 

  • More TA, Seshadri VS (1987) Maintenance of gynoecious muskmelon with silver thiosulfate. Veg Sci 14:138–142

    Google Scholar 

  • More TA, Seshadri VS, Magdum MB (1987) Development of gynoecious lines in muskmelon. Cucurbit Genet Cooper Rep 10:49–50

    Google Scholar 

  • Nagamani S, Basu S, Singh S, Lal SK, Behera TK, Chakrabarty SK, Talukdar A (2015) Effect of plant growth regulators on sex expression, fruit setting, seed yield and quality in the parental lines for hybrid seed production in bitter gourd (Momordica charantia). Indian J Agric Sci 85(9):1185–1191

    Article  CAS  Google Scholar 

  • Nandpuri KS, Singh S, Lal T (1982) Punjab hybrid a variety of muskmelon. Prog Farm 18:3–4

    Google Scholar 

  • Niego S, Batia M, Galun E, Levy M (1989) Production of hybrid cucumber seeds. United States. Patent number 4822949. https://patents.google.com/patent/US4822949A/en

  • Paled M, Guledagudda SS (2020) An economic analysis of hybrid water melon seed production in Koppal District of Karnataka. Ind J Pure App Biosci 8(1):26–31. https://doi.org/10.18782/2582-2845.7922

  • Pandey P, Shukla IN, Upadhyay A (2021) Effect of different plant growth regulators on growth, yield and quality parameters of cucumber (Cucumis sativus L.) cv. Kalyanpur green. J Pharmacogn Phytochem 10(1):2681–2684

  • Papadopoulou E, Grumet R (2005) Brassinosteriod-induced femaleness in cucumber and relationship to ethylene production. HortScience 40:1763–1767. https://doi.org/10.1109/ISPDC.2005.37

    Article  CAS  Google Scholar 

  • Park SO, Crosby KM, Huang RF, Mirkov TE (2004) Identification and confirmation of RAPD and SCAR markers linked to the ms-3 gene controlling male sterility in melon (Cucumis melo L.). J Am Soc Hort Sci 129:819–825

    Article  CAS  Google Scholar 

  • Park SO, Hwang HY, Crosby KM (2009) A genetic linkage map including loci for male sterility, sugars, and ascorbic acid in melon. J Am Soc Hort Sci 134:67–76

    Article  Google Scholar 

  • Patent number CN102523869A (2013) Pollination method for muskmelon in seed reproduction bud period. China https://patents.google.com/patent/CN113973707A/en

  • Pawełkowicz M, Osipowski P, Wojcieszek M, Wóycicki R, Witkowicz J, Hincha D, Przybecki Z (2012) Identification and characterization of genes connected with flower morphogenesis in cucumber. Biotechnologia 93:123–134. https://doi.org/10.5114/bta.2012.46577

    Article  Google Scholar 

  • Penaloza P (2001) Semillas de Hortalizas, Manual de Producción. Ediciones Universitarias de Valparaíso, Universidad Católica de Valparaíso, p 161

  • Peterson CE, Anhder LD (1960) Induction of staminate flowers on gynoecious cucumbers with gibberellin A3. Science 131(3414):1673–1674

    Article  CAS  PubMed  ADS  Google Scholar 

  • Peterson CE, Owens KW, Rowe PR (1983) Wisconsin 998 muskmelon germplasm. HortScience 18:116

    Article  Google Scholar 

  • Peterson JD, Reiners S, Nault BA (2013) Pollination services provided by bees in pumbkin fields supplemented with either Apis mellifera or Bombus impatiens or not supplemented. PLoS ONE 8(7):1–8

    Google Scholar 

  • Piferrer F (2013) Epigenetics of sex determination and gonadogenesis. Dev Dyn 242(4):360–370

    Article  CAS  PubMed  Google Scholar 

  • Pitrat M (1991) Linkage groups in Cucumis melo L. J Hered 82:406–411. https://doi.org/10.1093/oxfordjournals.jhered.a111112

    Article  CAS  Google Scholar 

  • Pitrat M, Chauvet M, Foury C (1999) Diversity, history and production of cultivated cucurbits. Acta Hortic 492:21–28. https://doi.org/10.17660/ActaHortic.1999.492.1

    Article  Google Scholar 

  • Pradeepkumar T, Aswini A (2020) High yielding ridge gourd hybrid from KAU. Indian Hortic 65(4):22–24

    Google Scholar 

  • Pradeepkumar T, Gopalakrishnan TR (2022) Five decades of Vegetable Research in Kerala Agricultural University. Kerala Agricultural University, Thrissur, p 497

    Google Scholar 

  • Pradeepkumar T, Hegade VC, Kannan D, Sujatha R, George TE, Nirmaladevi S (2012) Inheritance of male sterility and presence of dominant fertility restorer gene in ridge gourd (Luffa acutangula (L)Roxb.). Sci Hortic 144:60–64

    Article  CAS  Google Scholar 

  • Pradeepkumar T, Peter KV (2020) Genetics and breeding of vegetable crops, 3rd edn. Indian Council of Agricultural Research, Krishi Anusandhan Bhavan, New Delhi, p 575

  • Pradeepkumar T, Minimol JS, Deepu Mathew P, Veni, K, Varun R, Chithira PG, Rajeshwary U (2018) Development of CGMS system in ridge gourd [Luffa acutangula (Roxb.) L.] for production of F1 hybrids. Euphytica 214:159–168

  • Pradeepkumar T, Varun Roch C, Veni K (2022) Efficacy of hybrid seed production through natural pollinators employing male sterility: Case study of ridge gourd [Luffa acutangula (Roxb.) L.] CGMS system. Sci Hortic 297:0304–4238. https://doi.org/10.1016/j.scienta.2022.110968

    Article  CAS  Google Scholar 

  • Ram D, Kumar S, Banerjee MK, Singh B, Singh S (2002) Developing bitter gourd (Momordica charantia L.) populations with very high proportion of pistillate flowers. Rep Cucurbit Genet Coop 25:65–66

    Google Scholar 

  • Ramegowda KN (2016) Studies on pollination biology of ridge gourd (Luffa acutangula L.). Thesis. University of Agricultural Sciences, Bengaluru, p 82

  • Rao PG, Behra TK, Gaikwad AB, Munshi AD, Jat GS, Boopalakrishnan G (2018) Mapping and QTL analysis of gynoecy and earliness in Bitter Gourd (Momordica charantia L.) using genotyping-by-sequencing (GBS) technology. Front Plant Sci 9:1555. https://doi.org/10.3389/fpls.2018.01555

  • Revanasidda A, Belavadi VV (2019) Floral biology and pollination in Cucumis melo L., a tropical andromonoecious cucurbit. J Asia-Pac Entomol 22(1):215–225. https://doi.org/10.1016/j.aspen.2019.01.001

  • Ribeiro MF, Silva EMS, Junior IOL, Kiill LHP (2015) Honey bees (Apis mellifera) visiting flowers of yellow melon (Cucumis melo) using different number of hives. Cienc Rural 45(10):1768–1773. https://doi.org/10.1590/0103-8478cr20140974

    Article  Google Scholar 

  • Robinson RW (2000) Rationale and methods to produce hybrid cucurbit seed. In: Basra AS (ed) Hybrid seed production in vegetables, rationale and methods in selected species. Food Products Press, pp 1–47

  • Rudich J (1990) Biochemical aspects of hormonal regulation of sex expression in Cucurbits. In: Bates DM, Robinson RW, Jeffrey C (eds) Biology and utilization of the Cucurbitaceae. Cornell University Press, Ithaca, pp 269–280

    Google Scholar 

  • Saha S, Behra TK, Munshi AD, Singh SK, Saha TN (2016) Novel strategy and maintenance and mass multiplication of gynoecious line in bitter gourd through micropropagation. Indian J Hortic 73(2):208–212

    Article  Google Scholar 

  • Sarwar G, Aslam M, Munawar MS, Raja S, Mahmood R (2008) Effect of honeybee (Apis mellifera L.) pollination on fruit setting and yield of cucumber (Cucumis sativus L.). Pak Entomol 30(2):185–191

    Google Scholar 

  • Schoof H, Lenhard M, Haecker A, Mayer KFX, Jürgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Singh Y, Singh SK, Dhangrah V (2016) Exploitation of gynoecious lines in cucumber (Cucumis sativus L.) for Heterosis. Int J Bioresour Stress Manag 7(2):184–190

    Article  Google Scholar 

  • Sharma P, Nair SA, Sharma P (2019) Male sterility and its commercial exploitation in hybrid seed production of vegetable crops: a review. Agric Rev 40(4):261–270

    Google Scholar 

  • Sheng Y, Wang Y, Jiao S, Jin Y, Ji P, Luan F (2017) Mapping and preliminary analysis of ABORTED MICROSPORES (AMS) as the candidate gene underlying the male sterility (MS-5) mutant in melon (Cucumis melo L.). Front Plant Sci 8:902. https://doi.org/10.3389/fpls.2017.00902

    Article  PubMed  PubMed Central  Google Scholar 

  • Shengjun Z, Peng Z, Yuquing Z, Xinjuan C, Liping C (2013) Identification of SSR markers linked to gynoecious loci in cucumber (Cucumis sativus L). J Zhejiang Univ Sci 39:291–298

    Google Scholar 

  • Shifriss O (1986) A gynoecious line of B +B + Genotype in Cucurbita pepo. HortScience 21(2):319

    Article  Google Scholar 

  • Shirzad S, Arooie H, Azizi M (2012) Influence of plant growth regulators (PGRs) and planting method on growth and yield in oil pumpkin (Cucurbita pepo var. styriaca). Not Sci Biol 4(2):101–107

  • Shuler R, Roulston T, Farris G (2005) Farming practices influence wild pollinator populations on squash and pumpkin. J Econ Entomol 98:790–795

    Article  PubMed  Google Scholar 

  • Singh H, Swarup V, Singh B (1998) Exploitation of hybrid vigour in vegetables. IARI, New Delhi, p 46

  • Singh B, Tomar BS, Thakur S (2010) Quality seed production of parental line of Pumpkin (Cucurbits moschata L.) under an insect-proof net house. Acta Hortic 871:275–278

    Article  Google Scholar 

  • Singh AK, Pan RS, Bhavana P (2013) Heterosis and combining ability analysis in bitter gourd (Momordica charantia L.). The Bioscan 8(4):1533–1536

    CAS  Google Scholar 

  • Singh M, Sharma SP, Sarao NK, Kaur S, Chhuneja P (2019) Molecular mapping of nuclear male-sterility gene ms-1 in muskmelon (Cucumis melo L.). J Hortic Sci Biotechnol. https://doi.org/10.1080/14620316.2019.1652119

    Article  Google Scholar 

  • Solange AB, Santos Dos, Roselino AC, Bego LR (2008) Pollination of Cucumber (Cucumis Sativus L.) by stingless bees Scaptrotrigona aff. Depilis Moure and Nannotrigona testaceicoris Lepeletier (Hymenoptera: Melipononi) in green houses. Neotrop Entomol 37(5):506–512

  • Song H, Lou QF, Luo XD, Wolukau JN, Diao WP, Qian CT, Chen JF (2007) Regeneration of doubled haploid plant by androgenesis of cucumber (Cucumis sativus L.). Plant Cell Tiss Org Cult 90:245–254

    Article  CAS  Google Scholar 

  • Stanghellini MS, Ambrose JT, Schultheis JR (1998) Seed production in watermelon: a comparison between two commercially available pollinators. HortScience 33(1):28–30

    Article  Google Scholar 

  • Subhakar G, Sreedevi K (2015) Foraging ecology of insect pollinators in bitter gourd. Indian J Entomol 77(2):189–202

    Article  Google Scholar 

  • Sudha M, Gajanana TM, Murthy DS (2006) Economic impact of commercial hybrid seed production in vegetables on farm income, employment and farm welfare—a case of tomato and okra in Karnataka. Agric Econ Res Rev 19:251–268

    Google Scholar 

  • Suhri AGMI, Soesilohadi RCH, Putra RE, Raffiudin R, Agus A, Kohano S (2022) The effectiveness of stingless bees on pollination of bitter melon plants Momordica charantia L. (Cucurbitaceae). J Trop Biodivers Biotechnol. https://doi.org/10.22146/jtbb.69124

  • Sun B, Xu Y, Ng KH, Ito T (2009) A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes Dev 23:1791–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunny AM, Pradeepkumar T, Minimol JS, Deepu M, Sangeeta Kutty M, Anitha P (2022) Potential of gynoecious line in generating superior heterotic hybrids in Bitter Gourd (Momordica charantia L.). Indian J Plant Genet Res 35(1):27–33

    Article  Google Scholar 

  • Suprunova T, Shmykova N (2008) In vitro induction of haploid plants in unpollinated ovules, anther and microspore culture of Cucumis sativus. In: Pitrat M (ed) Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae, 21–24 May, Avignon, France

  • Sure S, Arooie H, Azizi M (2013) Effect of GA3 and Ehtephon on sex expression and oil yield in medicinal pumpkin (Cucurbita pepo var. styriaca). Int J Farm Allied Sci 9:196–201

    Google Scholar 

  • Suthar MR, Malik TP, Arora S, Singh VP, Bhatia AK, Rakesh M (2007) Effect of pruning and ethrel sprays on sex-expression and sex-ratio in cucumber (Cucumis sativus L.) under protected conditions. Haryana J Hortic Sci 36(1/2):145–147

    Google Scholar 

  • Switzenberg JA, Little HA, Hammar SA, Grumet R (2014) Floral primordia-targeted ACS (1-aminocyclopropane-1-carboxylate synthase) expression in transgenic Cucumis melo implicates fine tuning of ethylene production mediating unisexual flower development. Planta 240:797–808. https://doi.org/10.1007/s00425-014-2118-y

    Article  CAS  PubMed  Google Scholar 

  • Tharini KB (2016) Role of flower visitors in bitter gourd (Momordica charantia L.) pollination and seed production. University of Agricultural Sciences, Bengaluru, p 161

  • Tolla GE, Peterson CW (1979) Comparison of gibberellin A4/A7 and silver nitrate for induction of staminate flowers in a gynoecious cucumber line. HortScience 14:542–544

    Article  CAS  Google Scholar 

  • Trebitsh T, Rudich J, Riov J (1987) Auxin, biosynthesis of ethylene and sex expression in cucumber (Cucumis sativus). J Plant Growth Regul 5:105–113. https://doi.org/10.1007/BF00024738

    Article  CAS  Google Scholar 

  • Trebitsh T, Staub JE, O’Neill SD (1997) Identification of a 1-aminocyclopropane-1-carboxylic acid synthase gene linked to the female (F) locus that enhances female sex expression in cucumber. Plant Physiol 113:987–995. https://doi.org/10.1104/pp.113.3.987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsao TH (1988) Sex expression in flowering. Acta Phytotaxon Sin 14:203–207

    Google Scholar 

  • Varalakshmi B, Rajasekharan PE (2022) Characterization, inheritance of male sterility and development of male sterile and maintainer lines in ridge gourd (Luffa acutangula (Roxb. L.). J Hortic Sci 17(1): 25–33.

  • Varalakshmi B, Pitchaimuthu M, Rao ES, Krishnamurthy D, Suchitha Y, Manjunath KSS (2014) Identification, preliminary characterization and maintenance of gynoecious plants, IIHRBTGy-491 and IIHRBTGy-492 in bitter gourd. In: International Bitter gourd Conference (BiG2014) organized by AVRDC at ICRISAT, Hyderabad in March, p 36

  • Vashisht VK, Sharma SP (2016) MH-51: a new hybrid of muskmelon (Cucumis melo L.). In: 4th National symposium on transforming Indian agriculture towards food and nutritional security. ICAR-IGFRI, Jhansi, Uttar Pradesh

  • Walter SA, Taylor BH (2006) Effects of honey bee pollination on pumpkin fruit and seed yield. HortScience 41(2):370–373

    Article  Google Scholar 

  • Wamiq M, Gaur M, Kaushik K, Kumar D, Gangwar V, Gheware KM, Prasad VM (2022) Effect of plant growth regulators on growth parameters of bottle gourd (Lagenaria siceraria) cv. MGH-4. Int J Environ Clim Change 12(11):2441–2447

  • Watts VM (1967) Development of disease resistance and seed production in watermelon stocks carrying msg gene. J Am Soc Hortic Sci 91:579–580

    Google Scholar 

  • Wehner TC, Miller CH (1985) Effect of gynoecious expression on yield and earliness of a fresh-market cucumber hybrid. J Am Soc Hort Sci 110:464–466

    Article  Google Scholar 

  • Winsor JA, Davis LE, Stephenson AG (1987) The relationship between pollen load and fruit maturation and the effect of pollen load on offspring vigor in Cucurbita pepo. Am Nat 129:643–656

    Article  Google Scholar 

  • Yamasaki S, Fujii N, Matsuura S, Mizusawa H, Takahashi H (2001) The M locus and ethylene-controlled sex determination in andromonoecious cucumber plants. Plant Cell Physiol 42:608–619. https://doi.org/10.1093/pcp/pce076

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki S, Fujii N, Takahashi H (2003) Characterization of ethylene effects on sex determination in cucumber plants. Sex Plant Reprod 16:103–111

    Article  CAS  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol 35:155–189. https://doi.org/10.1146/annurev.pp.35.060184.001103

    Article  CAS  Google Scholar 

  • YanPing Z, HaiHe L, Bin X, ShouPeng G (2010) mRNA differential display between the male sterile buds and male fertile buds in watermelon male sterile G17AB line. J Fruit Sci 27:1037–1041

    Google Scholar 

  • Yetisir H, Sari N (2003) A new method for haploid muskmelon (Cucumis melo L.) dihaploidization. Sci Hort 98:277–283

    Article  Google Scholar 

  • Yin T, Quinn JA (1995) Tests of a mechanistic model of one hormone regulating both sexes in Cucumis sativus (Cucurbitaceae). Amer J Bot 82:1537–1546

    Article  CAS  Google Scholar 

  • Zhang Q, Gabert AC, Baggett JR (1994) Characterizing a cucumber pollen sterile mutant: inheritance, allelism, and response to chemical and environmental factors. J Am Soc Hort Sci 119:804–807

    Article  Google Scholar 

  • Zhang J, Shi J, Ji G, Zhang H, Gong G, Guo S, Yi R, Jianguang F, Shouwei T, Yong X (2017) Modulation of sex expression in four forms of watermelon by gibberellin, ethephone and silver nitrate. Hortic Plant J 3:91–100. https://doi.org/10.1016/j.hpj.2017.07.010

    Article  Google Scholar 

  • Zhang J, Guo S, Ji G, Zhao H, Sun H, Ren Y, Tian S, Li M, Gong G, Zhang H, Xu Y (2020) A unique chromosome translocation disrupting ClWIP1 leads to gynoecy in watermelon. Plant J 101:265–277. https://doi.org/10.1111/tpj.14537

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Tan FQ, Chung CH, Slavkovic F, Devani RS, Troadec C, Marcel F, Morin H, Camps C, Roldan MVG, Benhamed M, Dogimont C, Boualem A, Bendahmane A (2022) The control of carpel determinacy pathway leads to sex determination in cucurbits. Science 378:6619. https://doi.org/10.1126/science

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the editor and reviewers for their valuable comments that helped us to improve the manuscript.

Funding

This review was done as part of the PhD academic program and received no funding. 

Author information

Authors and Affiliations

Authors

Contributions

The concept of the manuscript was made by the first author, and the draft of the manuscript was prepared by both the authors.

Corresponding author

Correspondence to Divya K. Lekshmanan.

Ethics declarations

Conflict of interest

The authors have no competing interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradeepkumar, T., Lekshmanan, D.K. Mechanism of hybrid seed production in cucurbitaceous vegetables. Euphytica 220, 17 (2024). https://doi.org/10.1007/s10681-023-03278-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-023-03278-y

Keywords

Navigation