Skip to main content
Log in

QTL detection for grain size and shape traits using an improved genetic map in einkorn wheat (Triticum monococcum L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Einkorn wheat is a diploid (AmAm genome) and is the first cultivated crop that initiated agriculture. It is related to durum and bread wheat, and it harbours unique genes that can be used for wheat improvement. Grain size and shape are the main breeding targets due to their direct relation to yield and milling quality. To understand the genetic control of the grain size and shape-related traits in Einkorn wheat, a biparental population of 150 F8 recombinant inbred lines (RILs) derived from a cross between an advanced einkorn line (ID1623) and a cultivar (MONLIS) was used. The RIL population was genotyped with SNP, Silico-DArT, and SSR markers and a genetic map comprising seven linkage groups (representing n = 7) was constructed. The map contained 3716 markers distributed across 760 loci with a total length of 1216.09 cM and an average density of one locus every 1.60 cM. Composite Interval Mapping was used to detect the quantitative trait loci (QTLs) controlling seven grain size and shape-related traits using genetic map and the phenotypic data collected from five different environments and the BLUP (Best Linear Unbiased Prediction) values. A total of 33 QTLs (25 novel QTLs) were detected, which were distributed on all the seven einkorn chromosomes. Of these, 14 QTLs distributed on four chromosomes (2Am, 3Am, 5Am, and 6Am) were stable across environments. Three QTL hot spots were observed on chromosomes 2Am, 5Am and 6Am. Seven QTLs, one each for the seven traits with highest PVE% (up to 14–26% PVE in individual environments) were recommended for marker-assisted recurrent selection for improvement of grain traits in einkorn wheat. The study thus provides novel and important genetic information to help understand the genetic control of grain size and shape-related traits and also the genomic resources for use in cultivated einkorn wheat breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Botwright T, Condon A, Rebetzke G, Richards R (2002) Field evaluation of early vigour for genetic improvement of grain yield in wheat. Aust J Agric Res 53(10):1137–1145

    Article  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172(2):1165–1177

    Article  PubMed  PubMed Central  Google Scholar 

  • Breseghello F, Sorrells ME (2007) QTL analysis of kernel size and shape in two hexaploid wheat mapping populations. Field Crop Res 101(2):172–179

    Article  Google Scholar 

  • Chastain T, Ward K, Wysocki D (1995) Stand establishment response of soft white winter wheat to seedbed residue and seed size. Crop Sci 35(1):213–218

    Article  Google Scholar 

  • Cui F, Zhao C, Ding A, Li J, Wang L, Li X, Bao Y, Li J, Wang H (2014) Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet 127(3):659–675

    Article  PubMed  Google Scholar 

  • Desiderio F, Zarei L, Licciardello S, Cheghamirza K, Farshadfar E, Virzi N, Sciacca F, Bagnaresi P, Battaglia R, Guerra D (2019) Genomic regions from an Iranian landrace increase kernel size in durum wheat. Front Plant Sci 10:448

    Article  PubMed  PubMed Central  Google Scholar 

  • Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3(1):43–52

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dubcovsky J, Luo M-C, Zhong G-Y, Bransteitter R, Desai A, Kilian A, Kleinhofs A, Dvořák J (1996) Genetic map of diploid wheat, Triticum monococcum L. and its comparison with maps of Hordeum vulgare L. Genetics 143(2):983–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farahani HA, Moaveni P, Maroufi K (2011) Effect of seed size on seedling production in wheat (Triticum aestivum L). Adv Environ Biol 1711–1716

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci 100(25):15253–15258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan Y, Stobbe EH (1996) Seedling vigor and grain yield of ‘Roblin’wheat affected by seed size. Agron J 88(3):456–460

    Article  Google Scholar 

  • Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW (2010) A genetic framework for grain size and shape variation in wheat. Plant Cell 22(4):1046–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giura A, Saulescu NN (1996) Chromosomal location of genes controlling grain size in a large grained selection of wheat (Triticum aestivum L.). Euphytica 89(1):77–80. https://doi.org/10.1007/BF00015722

    Article  Google Scholar 

  • Griffiths S, Wingen L, Pietragalla J, Garcia G, Hasan A, Miralles D, Calderini DF, Ankleshwaria JB, Waite ML, Simmonds J (2015) Genetic dissection of grain size and grain number trade-offs in CIMMYT wheat germplasm. PLoS ONE 10(3):e0118847

    Article  PubMed  PubMed Central  Google Scholar 

  • Guan P, Lu L, Jia L, Kabir MR, Zhang J, Lan T, Zhao Y, Xin M, Hu Z, Yao Y (2018) Global QTL analysis identifies genomic regions on chromosomes 4A and 4B harboring stable loci for yield-related traits across different environments in wheat (Triticum aestivum L.). Front Plant Sci 9:529

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta PK, Balyan HS, Sharma S, Kumar R (2020) Genetics of yield, abiotic stress tolerance and biofortification in wheat (Triticum aestivum L.). Theor Appl Genet 133(5):1569–1602

    Article  PubMed  Google Scholar 

  • Heun M, Schäfer-Pregl R, Klawan D, Castagna R, Accerbi M, Borghi B, Salamini F (1997) Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278(5341):1312–1314

    Article  CAS  Google Scholar 

  • Hori K, Takehara S, Nankaku N, Sato K, Sasakuma T, Takeda K (2007) Barley EST markers enhance map saturation and QTL mapping in diploid wheat. Breed Sci 57(1):39–45

    Article  CAS  Google Scholar 

  • Hu W, Liao S, Zhao D, Jia J, Xu W, Cheng S (2022) Identification and validation of quantitative trait locifor grain size in bread wheat (Triticum aestivum L.). Agriculture 12(6):822

    Article  CAS  Google Scholar 

  • Ji G, Xu Z, Fan X, Zhou Q, Chen L, Yu Q, Liao S, Jiang C, Feng B, Wang T (2023) Identification and validation of major QTL for grain size and weight in bread wheat (Triticum aestivum L.). Crop J 11(2):564–572. https://doi.org/10.1016/j.cj.2022.06.014

  • Jing H-C, Kornyukhin D, Kanyuka K, Orford S, Zlatska A, Mitrofanova OP, Koebner R, Hammond-Kosack K (2007) Identification of variation in adaptively important traits and genome-wide analysis of trait–marker associations in Triticum monococcum. J Exp Bot 58(13):3749–3764

    Article  CAS  PubMed  Google Scholar 

  • Jing H-C, Bayon C, Kanyuka K, Berry S, Wenzl P, Huttner E, Kilian A, Hammond-Kosack KE (2009) DArT markers: diversity analyses, genomes comparison, mapping and integration with SSR markers in Triticum monococcum. BMC Genom 10(1):458. https://doi.org/10.1186/1471-2164-10-458

    Article  CAS  Google Scholar 

  • Kilian B, Özkan H, Walther A, Kohl J, Dagan T, Salamini F, Martin W (2007) Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (einkorn) domestication: implications for the origin of agriculture. Mol Biol Evol 24(12):2657–2668

    Article  CAS  PubMed  Google Scholar 

  • Kojima T, Nagaoka T, Noda K, Ogihara Y (1998) Genetic linkage map of ISSR and RAPD markers in Einkorn wheat in relation to that of RFLP markers. Theor Appl Genet 96(1):37–45

    Article  CAS  Google Scholar 

  • Korol A, Mester D, Frenkel Z, Ronin Y (2009) Methods for genetic analysis in the Triticeae. In: Genetics and genomics of the triticeae. Springer, pp 163–199

  • Kovach MJ, Sweeney MT, McCouch SR (2007) New insights into the history of rice domestication. Trends Genet 23(11):578–587

    Article  CAS  PubMed  Google Scholar 

  • Krishnappa G, Singh AM, Chaudhary S, Ahlawat AK, Singh SK, Shukla RB, Jaiswal JP, Singh GP, Solanki IS (2017) Molecular mapping of the grain iron and zinc concentration, protein content and thousand kernel weight in wheat (Triticum aestivum L.). PLoS ONE 12(4):e0174972

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari S, Jaiswal V, Mishra VK, Paliwal R, Balyan HS, Gupta PK (2018) QTL mapping for some grain traits in bread wheat (Triticum aestivum L.). Physiol Mol Biol Plants 24(5):909–920

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, Yang B (2017) Translational genomics of grain size regulation in wheat. Theor Appl Genet 130(9):1765–1771

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Zhang H, Li S, Zou Y, Li T, Liu J, Ding P, Mu Y, Tang H, Deng M (2019) Identification of quantitative trait loci for kernel traits in a wheat cultivar Chuannong16. BMC Genet 20(1):1–12

    Article  Google Scholar 

  • Malik P, Kumar J, Sharma S, Meher PK, Balyan HS, Gupta PK, Sharma S (2022) GWAS for main effects and epistatic interactions for grain morphology traits in wheat. Physiol Mol Biol Plants 28(3):651–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marino R, Volante A, Brandolini A, Heun M (2018) A high-resolution einkorn (Triticum monococcum L.) linkage map involving wild, domesticated and feral einkorn genotypes. Plant Breed 137(5):682–690

    Article  CAS  Google Scholar 

  • Money D, Gardner K, Migicovsky Z, Schwaninger H, Zhong G-Y, Myles S (2015) LinkImpute: fast and accurate genotype imputation for nonmodel organisms. G3 Genes Genomes Genet 5(11):2383–2390

    Article  Google Scholar 

  • Nesbitt M, Samuel D (1996) From staple crop to extinction? The archaeology and history of the hulled wheat. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 40–99

    Google Scholar 

  • Olivoto T, Lúcio ADC (2020) metan: an R package for multi-environment trial analysis. Methods Ecol Evol 11(6):783–789

    Article  Google Scholar 

  • Özkan H, Brandolini A, Schäfer-Pregl R, Salamini F (2002) AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in southeast Turkey. Mol Biol Evol 19(10):1797–1801

    Article  PubMed  Google Scholar 

  • Qu X, Li C, Liu H, Liu J, Luo W, Xu Q, Tang H, Mu Y, Deng M, Pu Z, Ma J (2022) Quick mapping and characterization of a co-located kernel length and thousand-kernel weight-related QTL in wheat. Theor Appl Genet 1–2

  • Ronin YI, Mester DI, Minkov DG, Akhunov E, Korol AB (2017) Building ultra-high-density linkage maps based on efficient filtering of trustable markers. Genetics 206(3):1285–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • SAS Institute Inc. (2022). SAS® 9.4 Statements: Reference. SAS Institute Inc, Cary, NC

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18(2):233–234

    Article  CAS  PubMed  Google Scholar 

  • Sesiz U, Özkan H (2021) A new genetic linkage map in einkorn wheat (Triticum monococcum) detects two major QTLs for heading date in chromosome 2A and 5A, probably corresponding to the photoperiod and vernalization genes. Plant Breeding

  • Shindo C, Sasakuma T, Watanabe N, Noda K (2002) Two-gene systems of vernalization requirement and narrow-sense earliness in einkorn wheat. Genome 45(3):563–569

    Article  CAS  PubMed  Google Scholar 

  • Simons KJ, Fellers JP, Trick HN, Zhang Z, Tai Y-S, Gill BS, Faris JD (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172(1):547–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh K, Ghai M, Garg M, Chhuneja P, Kaur P, Schnurbusch T, Keller B, Dhaliwal H (2007) An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum × T. monococcum RIL population. Theor Appl Genet 115(3):301

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Batra R, Sharma S, Saripalli G, Gautam T, Singh R, Pal S, Malik P, Kumar M, Jan I, Singh S, Kumar D, Pundir S, Chaturvedi D, Verma A, Rani A, Kumar A, Sharma H, Chaudhary J, Kumar K, Kumar S, Singh VK, Singh VP, Kumar S, Kumar R, Gaurav SS, Sharma S, Sharma PK, Balyan HS, Gupta PK (2021) WheatQTLdb: a QTL database for wheat. Mol Genet Genom 296(5):1051–1056. https://doi.org/10.1007/s00438-021-01796-9

    Article  CAS  Google Scholar 

  • Stein N, Feuillet C, Wicker T, Schlagenhauf E, Keller B (2000) Subgenome chromosome walking in wheat: a 450-kb physical contig in Triticum monococcum L. spans the resistance locus in hexaploid wheat (Triticum aestivum L.). Proc Natl Acad Sci 97(24):13436–13441. https://doi.org/10.1073/pnas.230361597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarts K, Li H, Romero Navarro JA, An D, Romay MC, Hearne S, Acharya C, Glaubitz JC, Mitchell S, Elshire RJ, Buckler ES, Bradbury PJ (2014) Novel methods to optimize genotypic imputation for low-coverage, next-generation sequence data in crop plants. Plant Genome 7(3): plantgenome2014.2005.0023. https://doi.org/10.3835/plantgenome2014.05.0023

    Article  Google Scholar 

  • Taenzler B, Esposti R, Vaccino P, Brandolini A, Effgen S, Heun M, Schäfer-Pregl R, Borghi B, Salamini F (2002) Molecular linkage map of einkorn wheat: mapping of storage-protein and soft-glume genes and bread-making quality QTLs. Genet Res 80(2):131–143

    Article  CAS  PubMed  Google Scholar 

  • Tanabata T, Shibaya T, Hori K, Ebana K, Yano M (2012) SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis. Plant Physiol 160(4):1871–1880. https://doi.org/10.1104/pp.112.205120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Team J (2019) JASP (Version 0.11.1)[Computer software]

  • Tyagi S, Mir R, Balyan H, Gupta P (2015) Interval mapping and meta-QTL analysis of grain traits in common wheat (Triticum aestivum L.). Euphytica 201(3):367–380

    Article  CAS  Google Scholar 

  • Volante A, Barabaschi D, Marino R, Brandolini A (2021) Genome-wide association study for morphological, phenological, quality, and yield traits in einkorn (Triticum monococcum L. subsp. monococcum). G3 11(11):jkab281

    Article  PubMed  PubMed Central  Google Scholar 

  • Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci 100(10):6263–6268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303(5664):1640–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu K, Liu D, Wu W, Yang W, Sun J, Li X, Zhan K, Cui D, Ling H, Liu C (2017) Development of an integrated linkage map of einkorn wheat and its application for QTL mapping and genome sequence anchoring. Theor Appl Genet 130(1):53–70

    Article  CAS  PubMed  Google Scholar 

  • Yu K, Liu DC, Chen Y, Wang DZ, Yang WL, Yang W, Yin LX, Zhang C, Zhao SC, Sun JZ, Liu CM, Zhang AM (2019) Unraveling the genetic architecture of grain size in einkorn wheat through linkage and homology mapping and transcriptomic profiling. J Exp Bot 70(18):4671–4687. https://doi.org/10.1093/jxb/erz247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaharieva M, Monneveux P (2014) Cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum): the long life of a founder crop of agriculture. Genet Resour Crop Evolut 61(3):677–706

    Article  CAS  Google Scholar 

  • Zanke CD, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Neumann F (2015) Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum L.) by genome-wide association mapping. Front Plant Sci 6:644

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhai H, Feng Z, Du X, Song Y, Liu X, Qi Z, Song L, Li J, Li L, Peng H, Hu Z, Yao Y, Xin M, Xiao S, Sun Q, Ni Z (2018) A novel allele of TaGW2-A1 is located in a finely mapped QTL that increases grain weight but decreases grain number in wheat (Triticum aestivum L.). Theoret Appl Genet 131(3):539–553. https://doi.org/10.1007/s00122-017-3017-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Andrea Brandolini for providing the einkorn mapping population and İbrahim Karahan for his help and support during the phenotyping process. HSB held the position of INSA Honorary Scientist during the present study.

Funding

Some part of this work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) with the project number of 117O048.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by US and HÖ. The first draft of the manuscript was written by US and HÖ. US, HÖ, and HSB read and approved the final manuscript.

Corresponding author

Correspondence to Hakan Özkan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sesiz, U., Balyan, H.S. & Özkan, H. QTL detection for grain size and shape traits using an improved genetic map in einkorn wheat (Triticum monococcum L.). Euphytica 219, 80 (2023). https://doi.org/10.1007/s10681-023-03202-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-023-03202-4

Keywords

Navigation