Skip to main content

Advertisement

Log in

Integration of genetic engineering into conventional rice breeding programs for the next generation

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Rice is one of the most important staple foods of dietary energy supply worldwide. Its breeding programs based on phenotype selection, yield, and quality have succeeded in developing elite varieties desirable for adaptability to local regions. This study summarized the genomic research on the process of rice breeding programs in a local region, Hokkaido. This review would provide a strategy to develop new rice varieties under the imminent threats of increasing world population, global climate change, and sustainability for agriculture. Genomic shifts in genetic population structure and genes under rice breeding programs in Hokkaido were characterized. These genetic rice features could be suitable for a model of crop breeding programs in any crop species. Rice breeding programs were categorized into three phases depending on the shifts in plant architecture type for yield. After shaping adaptability into the local region, integrating genetic engineering into conventional rice breeding programs would facilitate the development of new rice varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abberton M, Batley J, Bentley A, Bryant J, Cai H et al (2016) Global agricultural intensification during climate change: a role for genomics. Plant Biotechnol J 14(4):1095–1098

    Article  PubMed  Google Scholar 

  • Agrama HA, Yan WG, Jia M, Fjellstrom R, McClung AM (2010) Genetic structure associated with diversity and geographic distribution in the USDA rice world collection. Nat Sci 2:247–291

    Google Scholar 

  • An G, Lee S, Kim SH, Kim SR (2005) Molecular genetics using T-DNA in rice. Plant Cell Physiol 46(1):14–22

    Article  CAS  PubMed  Google Scholar 

  • Ando I, Sato H, Aoki N, Suzuki Y, Hirabayashi H et al (2010) Genetic analysis of the low-amylose characteristics of rice cultivars Oborozuki and Hokkai-PL9. Breed Sci 60:187–194

    Article  CAS  Google Scholar 

  • Ashikari M et al (2002) Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice green revolution. Breed Sci 52:143–150

    Article  CAS  Google Scholar 

  • Bessho-Uehara K, Wang DR, Furuta T, Minami A, Nagai K et al (2016) Loss of function at RAE2, a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice. Proc Natl Acad Sci U S A 113(32):8969–8974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen PJ, Hussmann JA, Yan J, Knipping F, Ravisankar P et al (2021) Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184(22):5635-5652.e29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung S, Kwon C, Lee JH (2022) Epigenetic control of abiotic stress signaling in plants. Genes Genomics 44(3):267–278

    Article  CAS  PubMed  Google Scholar 

  • Cobb JN, Biswas PS, Platten JD (2019) Back to the future: revisiting MAS as a tool for modern plant breeding. Theor Appl Genet 132(3):647–667

    Article  CAS  PubMed  Google Scholar 

  • Das G, Rao GJN (2015) Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar. Front Plant Sci 6:698

    Article  PubMed  PubMed Central  Google Scholar 

  • Das G, Patra JK, Baek KH (2017) Insight into MAS: a molecular tool for development of stress resistant and quality of rice through gene stacking. Front Plant Sci 8:985

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujino K, Ikegaya T (2020) A novel genotype DATTO5 developed using the five genes exhibits the fastest heading date designed in rice. Breed Sci 70(2):193–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujino K, Iwata N (2011) Selection for low-temperature germinability on the short arm of chromosome 3 in rice cultivars adapted to Hokkaido. Jpn Theor Appl Genet 123(7):1089–1097

    Article  Google Scholar 

  • Fujino K, Sekiguchi H (2005a) Identification of QTLs conferring genetic variation for heading date among rice varieties at the northern-limit of rice cultivation. Breed Sci 55:141–146

    Article  CAS  Google Scholar 

  • Fujino K, Sekiguchi H (2005b) Mapping of QTLs conferring extremely early heading in rice (Oryza sativa L.). Theor Appl Genet 111:393–398

    Article  CAS  PubMed  Google Scholar 

  • Fujino K, Sekiguchi H (2011) Origins of functional nucleotide polymorphisms in a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Plant Mol Biol 75(1–2):1–10

    Article  CAS  PubMed  Google Scholar 

  • Fujino K, Shirasawa K (2022) Fine-scale genetic structure of the rice landrace population in Japan. Mol Genet Genomics 297(3):711–718

    Article  CAS  PubMed  Google Scholar 

  • Fujino K, Yamanouchi U (2020) Genetic effect of a new allele for the flowering time locus Ghd7 in rice. Breed Sci 70(3):342–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujino K, Sekiguchi H, Sato T, Kiuchi H, Nonoue Y, Takeuchi Y, Ando T, Lin SY, Yano M (2004) Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theor Appl Genet 108(5):794–799

    Article  CAS  PubMed  Google Scholar 

  • Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K, Yano M (2008) Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proc Natl Acad Sci U S A 105(34):12623–12628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujino K, Yamanouchi U, Yano M (2013) Roles of Hd5 gene controlling heading date for adaptation to the northern limits of rice cultivation. Theor Appl Genet 126:611–618

    Article  CAS  PubMed  Google Scholar 

  • Fujino K, Obara M, Ikegaya T, Tamura K (2015) Genetic shift in local rice populations during rice breeding programs in the northern limit of rice cultivation in the world. Theor Appl Genet 128:1739–1746

    Article  PubMed  Google Scholar 

  • Fujino K, Nishimura T, Kiuchi H, Hirayama Y, Sato T (2017) Phenotypic changes during 100-year rice breeding programs in Hokkaido. Breed Sci 67:528–534

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujino K, Hirayama Y, Kaji R (2019a) Marker-assisted selection in rice breeding programs in Hokkaido. Breed Sci 69(3):383–392

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujino K, Hirayama Y, Obara M, Ikegaya T (2019b) Introgression of the chromosomal region with the Pi-cd locus from Oryza meridionalis into O. sativa L. during rice domestication. Theor Appl Genet 132(7):1981–1990

    Article  CAS  PubMed  Google Scholar 

  • Fujino K, Obara M, Ikegaya T (2019c) Establishment of adaptability to the northern-limit of rice production. Mol Genet Genomics 294(3):729–737

    Article  CAS  PubMed  Google Scholar 

  • Fujino K, Yamanouchi U, Nonoue Y, Obara M, Yano M (2019d) Switching genetic effects of the flowering time gene Hd1 under LD conditions by Ghd7 and OsPRR37 in rice. Breed Sci 69(1):127–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujino K, Obara M, Kiuchi H, Shinada H, Nishimura T et al (2020) Role of the rice blast resistance gene Pi-cd in rice (Oryza sativa L.) breeding programmes. Plant Breed 139:845–852

    Article  CAS  Google Scholar 

  • Fujino K, Kawahara Y, Koyanagi OK, Shirasawa K (2021) Translation of continuous artificial selection on phenotype into genotype during rice breeding programs. Breed Sci 71:125–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujino K, Kawahara Y, Shirasawa K (2022a) Artificial selection in the expansion of rice cultivation. Theor Appl Genet 135(1):291–299

    Article  CAS  PubMed  Google Scholar 

  • Fujino K, Kawahara Y, Shirasawa K (2022b) Genetic diversity among the varieties exhibiting early heading date in rice. Euphytica 218:18

    Article  Google Scholar 

  • Furuta T, Komeda N, Asano K, Uehara K, Gamuyao R et al (2015) Convergent loss of awn in two cultivated rice species Oryza sativa and Oryza glaberrima is caused by mutations in different loci. G3(bethesda) 11(5):2267–2274

    Google Scholar 

  • Havukkala IJ (1996) Cereal genome analysis using rice as a model. Curr Opin Genet Dev 6(6):711–714

    Article  CAS  PubMed  Google Scholar 

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19(1):5–9

    Article  CAS  PubMed  Google Scholar 

  • Hua L, Wang DR, Tan L, Fu Y, Liu F et al (2015) LABA1, a domestication gene associated with long, barbed awns in wild rice. Plant Cell 27(7):1875–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Kurata N, Wei X, Wang ZX, Wang A et al (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikegaya T, Ashida K (2021) Genetic region responsible for the differences of starch properties in two glutinous rice cultivars in Hokkaido. Jpn Breed Sci 71(3):375–383

    Article  CAS  Google Scholar 

  • International rice genome sequencing project, IRGSP (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34

    Article  CAS  PubMed  Google Scholar 

  • Kidokoro S, Shinozaki K, Yamaguchi-Shinozaki K (2022) Transcriptional regulatory network of plant cold-stress responses. Trends Plant Sci S1360–1385(22):00008–00015

    Google Scholar 

  • Leipe C, Long T, Wagner M, Goslard T, Tarasovf PE (2020) The spread of rice to Japan: insights from Bayesian analysis of direct radiocarbon dates and population dynamics in East Asia. Quat Sci Reviews 244:106507

    Article  Google Scholar 

  • Li Z, Pinson SR, Stansel JW, Park WD (1995) Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor Appl Genet 91(2):374–381

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zeng Y, Pan Y, Zhou L, Zhang Z et al (2021a) Stepwise selection of natural variations at CTB2 and CTB4a improves cold adaptation during domestication of japonica rice. New Phytol 231(3):1056–1072

    Article  CAS  PubMed  Google Scholar 

  • Li B, Du X, Fei Y et al (2021b) Efficient Breeding of early-maturing rice cultivar by editing PHYC via CRISPR/Cas9. Rice 14:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhang Z, Chong K, Xu Y (2022) Chilling tolerance in rice: past and present. J Plant Physiol 268:153576

    Article  CAS  PubMed  Google Scholar 

  • Ling Y, Mahfouz MM, Zhou S (2021) Pre-mRNA alternative splicing as a modulator for heat stress response in plants. Trends Plant Sci 26(11):1153–1170

    Article  CAS  PubMed  Google Scholar 

  • Lu JJ, Chang TT (1980) Rice in its temporal and spatial perspectives. In: Luh BS (ed) Rice: production and utilization. AVI Publishing Co. Inc., Westport, pp 1–74

    Google Scholar 

  • Luo J, Liu H, Zhou T, Gu B, Huang X et al (2013) An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell 25(9):3360–3376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Dai X, Xu Y, Luo W, Zheng X et al (2015) COLD1 confers chilling tolerance in rice. Cell 160(6):1209–1221

    Article  CAS  PubMed  Google Scholar 

  • Mao D, Xin Y, Tan Y, Hu X, Bai J et al (2019) Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate. Proc Natl Acad Sci U S A 116(9):3494–3501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCouch SR, Doerge RW (1995) QTL mapping in rice. Trends Genet 11(12):482–487

    Article  CAS  PubMed  Google Scholar 

  • Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M (1998) Arabidopsis thaliana: a model plant for genome analysis. Science 282(5389):679–682

    Article  Google Scholar 

  • Molla KA, Sretenovic S, Bansal KC, Qi Y (2021) Precise plant genome editing using base editors and prime editors. Nat Plants 7(9):1166–1187

    Article  CAS  PubMed  Google Scholar 

  • Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H et al (2002) Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9(1):11–17

    Article  CAS  PubMed  Google Scholar 

  • Nishi A, Nakamura Y, Tanaka N, Satoh H (2001) Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol 127:459–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonoue Y, Fujino K, Hirayama Y, Yamanouchi U, Lin SY, Yano M (2008) Detection of quantitative trait loci controlling extremely early heading in rice. Theor Appl Genet 116:715–722

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM et al (1999) “Green revolution” genes encode mutant gibberellin response modulators. Nature 400(6741):256–261

    Article  CAS  PubMed  Google Scholar 

  • Sasaki et al. (2002) Nature. 416(6882):701–702

  • Sasaki T, Matsumoto T, Antonio BA, Nagamura Y (2005) From mapping to sequencing, post-sequencing and beyond. Plant Cell Physiol 46(1):3–13

    Article  CAS  PubMed  Google Scholar 

  • Shibaya T, Nonoue Y, Ono N, Yamanouchi U, Hori K, Yano M (2011) Genetic interactions involved in the inhibition of heading date QTL, Hd2 in rice under long-day conditions. Theor Appl Genet 123:1133–1143

    Article  PubMed  Google Scholar 

  • Shinada H, Yamamoto T, Yamamoto E, Hori K, Yonemaru J, Matsuba S, Fujino K (2014) Historical changes in population structure during rice breeding programs in the northern limits of rice cultivation. Theor Appl Genet 127:995–1004

    Article  PubMed  Google Scholar 

  • Shinada H, Yamamoto T, Sato H, Yamamoto E, Hori K, Yonemaru J, Sato T, Fujino K (2015) Quantitative trait loci for rice blast resistance detected in a local rice breeding population by genome-wide association mapping. Breed Sci 65(5):388–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Snowdon RJ, Wittkop B, Chen TW, Stahl A (2021) Crop adaptation to climate change as a consequence of long-term breeding. Theor Appl Genet 134(6):1613–1623

    Article  PubMed  Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci U S A 99(13):9043–9048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki K, Nakamura S, Satoh H, Ohtsubo K (2006) Relationship between chain-length distributions of waxy rice amylopectins and physical properties of rice grains. J Appl Glycosci 53:227–232

    Article  CAS  Google Scholar 

  • Tan Y, Corke H (2002) Factor analysis of physicochemical properties of 63 rice varieties. J Sci Food Agric 82:745–752

    Article  CAS  Google Scholar 

  • Tappiban P, Ying Y, Xu F, Bao J (2021) Proteomics and post-translational modifications of starch biosynthesis-related Proteins in developing seeds of rice. Int J Mol Sci 22(11):5901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28(3):286–289

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108(50):20260–20264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umemoto T, Nakamura Y, Ishikura N (1995) Activity of starch synthase and the amylose content in rice endosperm. Phytochemistry 40:1613–1616

    Article  CAS  Google Scholar 

  • United Nations (2019) World population prospects: the 2017 revision: key findings and advance tables (PDF), p 2

  • Wang N, Long T, Yao W, Xiong L, Zhang Q, Wu C (2013) Mutant resources for the functional analysis of the rice genome. Mol Plant 6(3):596–604

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Hu P, Chen Z, Liu Q, Wei C (2017) Progress in high-amylose cereal crops through inactivation of starch branching enzymes. Front Plant Sci 8:469

    PubMed  PubMed Central  Google Scholar 

  • Wang W, Li A, Zhang Z, Chu C (2021) Posttranslational modifications: regulation of nitrogen utilization and signaling. Plant Cell Physiol 62(4):543–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Xu J, Guo H, Jiang L, Chen S, Yu C, Zhou Z, Hu P, Zhai H, Wan J (2010) DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol 153(4):1747–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto T, Lin H, Sasaki T, Yano M (2000) Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics 154(2):885–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T (1997) Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet 95:1025–1032

    Article  CAS  Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang Z, Sun X, Zhu X, Li B, Li J, Guo H, Chen C, Pan Y, Liang Y, Xu Z, Zhang H, Li Z (2019) Natural alleles of GLA for grain length and awn development were differently domesticated in rice subspecies japonica and indica. Plant Biotechnol J 17(8):1547–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang O, Liang C, Yang B, You H, Xu L, Chen Y, Xiang X (2021) Effects of starch synthesis-related genes polymorphism on quality of glutinous rice. Front Plant Sci 12:707992

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhu J, Gong Z, Zhu JK (2022) Abiotic stress responses in plants. Nat Rev Genet 23(2):104–119

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the Iijima Memorial Foundation for the Promotion of Food Science and Technology.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Envisaged the concept, wrote the manuscript and approved the final manuscript: YS, TI, and KF.

Corresponding author

Correspondence to Yoshiyuki Sagehashi.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animal performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagehashi, Y., Ikegaya, T. & Fujino, K. Integration of genetic engineering into conventional rice breeding programs for the next generation. Euphytica 218, 145 (2022). https://doi.org/10.1007/s10681-022-03102-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-022-03102-z

Keywords

Navigation