Skip to main content

Advertisement

Log in

GG13: a candidate gene related to seed development and viability from apomictic Paspalum notatum

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

One way to transfer apomixis (asexual reproduction through seeds) to major crops could be through genetic transformation, but for this a set of transgenes that triggers each of the involved processes should be generated. Although most angiosperms require an endospermic balance number (EBN) for normal endosperm development, tetraploid Paspalum notatum is EBN- insensitive. Here, a candidate gene (GG13) of Paspalum notatum associated with endosperm development in insensitive EBN crosses was analyzed by gene silencing in Arabidopsis thaliana. When comparing the silenced and control conditions, silenced condition evidenced less relative expression in RT-qPCR experiments, more abortions (6 vs. 1), fewer seeds (16 vs. 34), a more elongated shape (shape index 1.83 vs. 1.57), and lower germination (4 vs. 36 %) in phenotypic analyses. The above results were consistent with bioinformatically predicted functions for GG13 gene. Therefore, the importance of the GG13 gene in endosperm development in EBN-insensitive seeds was demonstrated, offering the possibility of incorporating apomixis into major crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Binder A, Lambert J, Morbitzer R, Popp C, Ott T, Lahaye T, Parniske M (2014) A Modular Plasmid Assembly Kit for Multigene Expression, Gene Silencing and Silencing Rescue in Plants. PLoS ONE 9(2):e88218. https://doi.org/10.1371/journal.pone.0088218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boavida LC, Shuai B, Yu H, Pagnussat GC, Sundaresan V, McCormick S (2009) A Collection of Ds Insertional Mutants Associated with Defects in Male Gametophyte Development and Function in Arabidopsis thaliana. Genetics 181:1369–1385

    Article  CAS  Google Scholar 

  • Boettcher M, McManus MT (2015) Choosing the Right Tool for the Job: RNAi, TALEN, or CRISPR. Mol Cell 58(4):575–585

    Article  CAS  Google Scholar 

  • Bologna NG, Voinnet O (2014) The diversity, Biogenesis, and Activities of Endogenous Silencing Small RNAs in Arabidopsis. Annu Rev Plant Biol 65(28):1–31

    Google Scholar 

  • Burton GW (1948) The method of reproduction in common Bahiagrass, Paspalum notatum. Journal of American Society of Agronomy 40:443–452

    Article  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W (2005) Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiol 139(1):5–17

    Article  CAS  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2016) InfoStat. Grupo InfoStat. FCA, Universidad Nacional de Córdoba, Argentina

    Google Scholar 

  • Felitti SA, Acuña CA, Ortiz JPA, Quarin CL (2015) Transcriptome analysis of seed development in apomictic Paspalum notatum. Ann Appl Biol. doi:https://doi.org/10.1111/aab.12206

    Article  Google Scholar 

  • Hajduch M, Hearne LB, Miernyk JA, Casteel JE, Joshi T, Agrawal GK, Song Z, Zhou M, Xu D, Thelen JJ (2010) Systems Analysis of Seed Filling in Arabidopsis: Using General Linear Modeling to Assess Concordance of Transcript and Protein Expression. Plant Physiol 152:2078–2087

    Article  CAS  Google Scholar 

  • Helliwell C, Waterhouse P (2003) Constructs and methods for high-throughput gene silencing in plants. Methods 30:289–295

    Article  CAS  Google Scholar 

  • Houston NL, Fan C, Xiang Q, Schulze JM, Jung R, Boston RS (2005) Phylogenetic Analyses Identify 10 Classes of the Protein Disulfide Isomerase Family in Plants, Including Single-Domain Protein Disulfide Isomerase-Related Proteins. Plant Physiol 137:762–778

    Article  CAS  Google Scholar 

  • Kaushal P, Roy AK, Khare A, Malaviya DR, Zadoo SN, Choubey RN (2007) Crossability and Characterization of Interspecific Hybrids between Sexual Pennisetum glaucum (Pearl Millet) and a New Cytotype (2n56) of Apomictic P. squamulatum. Cytologia 72(1):111–118

    Article  Google Scholar 

  • Kaushal P, Khare A, Siddiqui SA, Agrawal A, Sharmishtha P, Malaviya DR, Roy AK, Zadoo SN (2010) Morphological, cytological and reproductive characterization of tri-species hybrids (GOS) between Pennisetum glaucum, P. orientale and P. squamulatum. Euphytica 174:261–228

    Article  Google Scholar 

  • Kaushal P, Dwivedi KK, Radhakrishna A, Srivastava MK, Kumar V, Roy AK, Malaviya DR (2019) Partitioning Apomixis Components to Understand and Utilize Gametophytic Apomixis. Front Plant Sci 10:256. doi:https://doi.org/10.3389/fpls.2019.00256

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimura S, Higashino Y, Kitao Y, Masuda T, Urade R (2015) Expression and characterization of protein disulfide isomerase family proteins in bread wheat. BMC Plant Biol 15:73. DOI https://doi.org/10.1186/s12870-015-0460-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an Insertional Mutagen in Arabidopsis. Plant Cell 11:2283–2290

    Article  CAS  Google Scholar 

  • Lersten NR, Curtis JD (1988) Secretory reservoirs (ducts) of two kinds in giant ragweed (Ambrosia trifida; Asteraceae). Am J Bot 75(1):1313–1323

    Article  Google Scholar 

  • Li CP, Larkins BA (1996) Expression of protein disulfide isomerase is elevated in the endosperm of the maize floury-2 mutant. Plant Mol Biol 30:873–882

    Article  CAS  Google Scholar 

  • Livak K, Schmittgen TD (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-∆∆C T Method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Mancini M, Permingeat H, Colono C, Siena L, Pupilli F, Azzaro C, Dusi D, Carneiro V, Podio M, Seijo G, Gonzalez A, Felitti SA, Ortiz JPA, Leblanc O, Pessino SC (2018) The MAP3K-coding QUI-GON JINN (QGJ) gene is essential to the formation of unreduced embryo sacs in paspalum. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01547

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez EJ, Urbani MH, Quarín CL, Ortiz JPA (2001) Inheritance of apospory in bahiagrass, Paspalum notatum. Hereditas 135:9–25

    Google Scholar 

  • Martínez EJ, Hopp HE, Stein J, Ortiz JPA, Quarin CL (2003) Genetic characterization of apospory in tetraploid Paspalum notatum based on the identification of linked molecular markers. Mol Breed 12:319–327

    Article  Google Scholar 

  • Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlín, pp 475–518

    Chapter  Google Scholar 

  • Onda Y (2013) Oxidative Protein-Folding Systems in Plant Cells. Int J Cell Biol. https://doi.org/10.1155/2013/585431

    Article  PubMed  PubMed Central  Google Scholar 

  • Onda Y, Kobori Y (2014) Differential activity of rice protein disulfide isomerase family members for disulfide bond formation and reduction. FEBS Open Bio 4:730–734

    Article  CAS  Google Scholar 

  • Ortiz JPA, Quarin CL, Pessino SC, Acuña CA, Martínez EJ, Espinoza F, Hojsgaard DH, Sartor ME, Cáceres M-E, Pupilli F (2013) Harnessing apomictic reproduction in grasses: what we have learned from Paspalum. Ann Bot 112(5):767–768

    Article  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):2003–2007

    Article  Google Scholar 

  • Pozzi FI, Pratta GR, Acuña CA, Felitti SA (2018) Xenia in bahiagrass: gene expression at initial seed formation. Seed Sci Res. doi https://doi.org/10.1017/S0960258518000375

    Article  Google Scholar 

  • Pupilli F, Barcaccia G (2012) Cloning plants by seeds: inheritance models and candidate genes to increase fundamental knowledge for engineering apomixis in sexual crops. Journal of Biotech 159:291–311

    Article  CAS  Google Scholar 

  • Quarin CL (1999) Effect of pollen source and pollen ploidy on endosperm formation and seed set in pseudogamous apomictic Paspalum notatum. Sex Plant Reprod 11:331–335

    Article  Google Scholar 

  • Roustan V, Roustan PJ, Weidinger M, Reipert S, Kapusi E, Shabrangy A, Stoger E, Weckwerth W, Ibl V (2018) Microscopic and Proteomic Analysis of Dissected Developing Barley Endosperm Layers Reveals the Starchy Endosperm as Prominent Storage Tissue for ER-Derived Hordeins Alongside the Accumulation of Barley Protein Disulfide Isomerase (HvPDIL1-1). . Front Plant Sci 9:1248

    Article  Google Scholar 

  • Savidan Y (2000) Apomixis: Genetics and Breeding. In: Janick J (ed) Plant Breeding Reviews. John Wiley & Sons, Inc, London, pp 13–86

    Google Scholar 

  • Sahu PP, Gupta S, Malaviya DR, Roy AK, Kaushal P, Prasad M (2012) Transcriptome Analysis of Differentially Expressed Genes During Embryo Sac Development in Apomeiotic Non-Parthenogenetic Interspecific Hybrid of Pennisetum glaucum. Mol Biotechnol 51:262–271

    Article  CAS  Google Scholar 

  • Sijen T, Vijn I, Rebocho A, Van Blokland R, Roelofs D, Mol J, Kooter JM (2001) Transcriptional and posttranscriptional gene silencing are mechanistically related. Curr Biol 11(6):436–440

    Article  CAS  Google Scholar 

  • Simon P (2003) Q-Gene: processing quantitative real-time RT–PCR data. Bioinformatics 19:1439–1440

    Article  CAS  Google Scholar 

  • Souza AJ, Januzzi Mendes BM, Alves Mourão Filho FA (2007) Gene Silencing: Concepts, Applications and perspectives in woody plants. Rev Sci Agric 64(6):645–656

    Article  Google Scholar 

  • Tiwari M, Sharma D, Trivedi PK (2014) Artificial microRNA mediated gene silencing in plants: progress and perspectives. Plant Mol Biol 86:1–18

    Article  CAS  Google Scholar 

  • Vázquez Rovere C, Bazzini A, Rodríguez C, Almasia N, Asurmendi S (2010) Usos del silenciamiento génico para el análisis funcional de genes candidatos. In: Levitus G, Echenique V, Rubinstein C, Hopp E, Mroginski L (eds) Biotecnología y Mejoramiento Vegetal II. INTA, Buenos Aires, pp 259–270

    Google Scholar 

  • Wang K (2006) Agrobacterium protocols. Humana Press, Totowa

    Google Scholar 

  • Wang H, Boavida LC, Ron M, McCormick S (2008) Truncation of a Protein Disulfide Isomerase, PDIL2-1, Delays Embryo Sac Maturation and Disrupts Pollen Tube Guidance in Arabidopsis thaliana. Plant Cell 20:3300–3311

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ph.D. John W. Miles for his valuable advice and discussions. This work was financed by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) grant PIP-11220090100613 and P-UE: 22920160100043CO (IICAR), the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) grant PICT-2012-1321, the Secretaría de Ciencia y Técnica, Universidad Nacional de Rosario (UNR) grants AGR233 y AGR317. CA Acuña and SA Felitti are research career members of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). CL Quarin is a professor in the Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste. The authors declare that they have no conflict of interest.

Funding

This work was financed by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) grant PIP-11,220,090,100,613 and P-UE: 22920160100043CO (IICAR), the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) grant PICT-2012-1321, the Secretaría de Ciencia y Técnica, Universidad Nacional de Rosario (UNR) grants AGR233 y AGR317.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Felitti.

Ethics declarations

Conflict of interest

The author declares their is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozzi, F.I., Acuña, C.A., Quarin, C.L. et al. GG13: a candidate gene related to seed development and viability from apomictic Paspalum notatum. Euphytica 217, 148 (2021). https://doi.org/10.1007/s10681-021-02881-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-021-02881-1

Keywords

Navigation