Skip to main content
Log in

Transcriptome Analysis of Differentially Expressed Genes During Embryo Sac Development in Apomeiotic Non-Parthenogenetic Interspecific Hybrid of Pennisetum glaucum

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Apomixis results in the production of genetically uniform progeny, derived from the fertilization independent development (parthenogenesis) of an unreduced egg cell (apomeiosis). To identify genes involved in the apomeiosis, a comparative transcriptome analysis of differentially expressed genes during embryo sac (ES) development in a sexual Pennisetum glaucum (genotype 81A1) and its apomeiotic (aposporic) non-parthenogenetic interspecific hybrid (BC1GO) was investigated. BC1GO exhibited the partitioned apomeiosis component, whereby the second apomixis component viz., parthenogenesis was completely lacking. A total of 96 non-redundant transcripts were recovered using suppression subtractive hybridization and classified into 11 different categories according to their putative functions. Amongst the identified transcripts, many of them belonged to unknown function (40%) followed by those involved in protein metabolism, stress response, pollen/ovule/embryo development, and translation/protein modification process. A data search of transcriptional profiling in other apomictic species revealed that 75% of the differentially expressed transcripts have not been reported in previous studies. By macroarray analysis, we identified differential expression pattern of 96 transcripts, 45 (47%) of which showed ≥2-fold induction in apomeiotic BC1GO. Further, the obtained results were validated by quantitative real-time polymerase chain reaction to have a comparative expression profiling of eight selected up-regulated transcripts (≥2.5-fold) between BC1GO and 81A1 at different phases of ovule development. In silico mapping demonstrated that 13 transcripts were located onto rice chromosome 2, region syntenic with the apospory locus as reported in Brachiaria brizantha and Paspalum notatum. The expression patterns of these transcripts showed a significant difference at differentiating megaspore mother cell and gametogenesis stages thereby suggesting their involvement in floral development during apomeiotic (Panicum-type aposporous) ES development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SSH:

Suppression subtractive hybridization

BLAST:

Basic local alignment search tool

qRT-PCR:

Quantitative real-time polymerase chain reaction

MMC:

Megaspore mother cell

References

  1. Nogler, G. A. (1984). Gametophytic apomixis. In B. M. Johri (Ed.), Embryology of Angiosperms (pp. 448–452). Berlin: Springer.

    Google Scholar 

  2. Vielle-Calzada, J. P., Nuccio, M. L., Budiman, M. A., Thomas, T. L., Burson, B. L., Hussey, M. A., et al. (1996). Comparative gene expression in sexual and apomictic ovaries of Pennisetum ciliare (L) Link. Plant Molecular Biology, 32, 1085–1092.

    Article  CAS  Google Scholar 

  3. Carman, J. G. (1997). Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biological Journal of the Linnean Society, 61, 51–94.

    Article  Google Scholar 

  4. Crane, C. F. (2001). Classification of apomictic mechanisms. In Y. Savidan, J. G. Carman, & T. Dresselhaus (Eds.), The flowering of apomixis: From mechanisms to genetic engineering (pp. 24–43). Houston: CIMMYT Publications.

    Google Scholar 

  5. Koltunow, A. M., & Grossniklaus, U. (2003). Apomixis: a developmental perspective. Annual Review of Plant Biology, 54, 547–574.

    Article  CAS  Google Scholar 

  6. Ozias-Akins, P., & van Dijk, P. J. (2007). Mendelian genetics of apomixes in plants. Annual Review of Genetics, 41, 509–537.

    Article  CAS  Google Scholar 

  7. Kaushal, P., Roy, A. K., Khare, A., Malaviya, D. R., Zadoo, S. N., & Choubey, R. N. (2007). Crossability and characterization of interspecific hybrids between sexual Pennisetum glaucum (Pearl millet) and a new cytotype (2n = 56) of apomictic P. squamulatum. Cytologia, 72, 151–158.

    Article  Google Scholar 

  8. Tucker, M. R., Araujo, A. C., Paech, N. A., Hecht, V., Schmidt, E. D., Rossell, J. B., et al. (2003). Sexual and apomictic reproduction in Hieracium subgenus Pilosella are closely interrelated developmental pathways. Plant Cell, 15, 1524–1537.

    Article  CAS  Google Scholar 

  9. Sharbel, T. F., Voigt, M. L., Corral, J. M., Galla, G., Kumlehn, J., Klukas, C., et al. (2010). Apomictic and sexual ovules of Boechera display heterochronic global gene expression patterns. Plant Cell, 22, 655–671.

    Article  CAS  Google Scholar 

  10. Verhoeven, K. J. F., Jansen, J. J., van Dijk, P. J., & Biere, A. (2010). Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytologist, 185, 1108–1118.

    Article  CAS  Google Scholar 

  11. Singh, M., Burson, B. L., & Finlayson, S. A. (2007). Isolation of candidate genes for apomictic development in buffelgrass (Pennisetum ciliare). Plant Molecular Biology, 64, 673–682.

    Article  CAS  Google Scholar 

  12. Chen, L., Miyazaki, C., Kojima, A., Saito, A., & Adachi, T. (1999). Isolation and characterization of a gene expressed during early embryo sac development in apomictic guineagrass (Panicum maximum). Journal of Plant Physiology, 154, 55–62.

    Article  CAS  Google Scholar 

  13. Albertini, E., Marconi, G., Barcaccia, G., Raggi, L., & Falcinelli, M. (2004). Isolation of candidate genes for apomixis in Poa pratensis L. Plant Molecular Biology, 56, 879–894.

    Article  CAS  Google Scholar 

  14. Polegri, L., Calderini, O., Arcioni, S., & Pupilli, F. (2010). Specific expression of apomixis-linked alleles revealed by comparative transcriptomic analysis of sexual and apomictic Paspalum simplex Morong flowers. Journal of Experimental Botany, 61, 1869–1883.

    Article  CAS  Google Scholar 

  15. Guerin, J., Rossel, J. B., Robert, S., Tsuchiya, T., & Koltunow, A. (2000). A DEFICIENS homologue is down-regulated during apomictic initiation in ovules of Hieracium. Planta, 210, 914–920.

    Article  CAS  Google Scholar 

  16. Cervigni, G. D., Paniego, N., Pessino, S., Selva, J. P., Díaz, M., Spangenberg, G., et al. (2008). Gene expression in diplosporous and sexual Eragrostis curvula genotypes with differing ploidy levels. Plant Molecular Biology, 67, 11–23.

    Article  CAS  Google Scholar 

  17. Jauhar, P. P., & Hanna, W. W. (1998). Cytogenetics and genetics of pearl millet. In D. L. Sparks (Ed.), Advances in Agronomy (pp. 1–26). New York: Academic Press.

    Google Scholar 

  18. Kaushal, P., Khare, A., Siddiqui, S. A., Agrawal, A., Paul, S., Malaviya, D. R., et al. (2010). Morphological, cytological and reproductive characterization of tri-species hybrids (GOS) between Pennisetum glaucum, P. orientale and P. squamulatum. Euphytica, 174, 261–281.

    Article  Google Scholar 

  19. Rodrigues, J. C., Cabral, G. B., Dusi, D. M., de Mello, L. V., Rigden, D. J., & Carneiro, V. T. (2003). Identification of differentially expressed cDNA sequences in ovaries of sexual and apomictic plants of Brachiaria brizantha. Plant Molecular Biology, 53, 745–757.

    Article  CAS  Google Scholar 

  20. Boominathan, P., Shukla, R., Kumar, A., Manna, D., Negi, D., Verma, et al. (2004). Long term transcript accumulation during the development of dehydration adaptation in Cicer arietinum. Plant Physiology, 135, 1–13.

    Article  Google Scholar 

  21. Puranik, S., Jha, S., Srivastava, P. S., Sreenivasulu, N., & Prasad, M. (2011). Comparative transcriptome analysis of contrasting foxtail millet cultivars in response to short-term salinity stress. Journal of Plant Physiology, 168, 280–287.

    Article  CAS  Google Scholar 

  22. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real time quantitative PCR and the 2−∆∆Ct method. Methods, 25, 402–408.

    Article  CAS  Google Scholar 

  23. Rancour, D. M., Park, M., Knight, S. D., & Bednarek, S. Y. (2004). Plant UBX domain-containing protein 1, PUX1, regulates the oligomeric structure and activity of Arabidopsis CDC48. Journal of Biological Chemistry, 279, 54264–54274.

    Article  CAS  Google Scholar 

  24. Moir, D., Steward, S. E., Osmond, C., & Botstein, D. (1982). Cold-sensitive cell-division-cycle mutants of yeast: isolation, properties, and pseudoreversion studies. Genetics, 100, 547–563.

    CAS  Google Scholar 

  25. Egerton, M., & Samelson, L. E. (1994). Biochemical characterization of valosin-containing protein, a protein tyrosine kinase substrate in hematopoietic cells. Journal of Biolgical Chemistry, 269, 11435–11441.

    CAS  Google Scholar 

  26. Park, S., Rancour, D. M., & Bednarek, S. Y. (2008). In planta analysis of the cell cycle-dependent localization of AtCDC48A and its critical roles in cell division, expansion, and differentiation. Plant Physiology, 148, 246–258.

    Article  CAS  Google Scholar 

  27. Rienties, I. M., Vink, J., Borst, J. W., Russinova, E., & de Vries, S. C. (2005). The Arabidopsis SERK1 protein interacts with the AAA-ATPase AtCDC48, the 14–3-3 protein GF14l and the PP2C phosphatase KAPP. Planta, 221, 394–405.

    Article  CAS  Google Scholar 

  28. Zhu, H., Bi, Y. D., Yu, L. J., Guo, D. D., & Wang, B. C. (2009). Comparative proteomic analysis of apomictic monosomic addition line of Beta corolliflora and Beta vulgaris L. in sugar beet. Molecular Biology Report, 36, 2093–2098.

    Article  CAS  Google Scholar 

  29. Albertini, E., Marconi, G., Reale, L., Barcaccia, G., Porceddu, A., Ferranti, F., et al. (2005). SERK and APOSTART, candidate genes for apomixis in Poa pratensis. Plant Physiology, 138, 2185–2199.

    Article  CAS  Google Scholar 

  30. Fobert, P. R., Gaudin, V., Lunness, P., Coen, E. S., & Doonan, J. H. (1996). Distinct classes of cdc2-related genes are differentially expressed during the cell division cycle in plants. Plant Cell, 8, 1465–1476.

    Article  CAS  Google Scholar 

  31. Lehti-Shiu, M. D. (2003). Characterization of MADS domain genes expressed during embryogenesis in Arabidopsis thaliana. Ph.D. thesis, University of Wisconsin- Madison, Madison, WI.

  32. Amasino, R. (2004). Vernalization, competence, and the epigenetic memory of winter. Plant Cell, 16, 2553–2559.

    Article  CAS  Google Scholar 

  33. Lehti-Shiu, M. D., Adamczyk, B. J., & Fernandez, D. E. (2005). Expression of MADS-box genes during the embryonic phase in Arabidopsis. Plant Molecular Biology, 58, 89–107.

    Article  CAS  Google Scholar 

  34. Yamada-Akiyama, H., Akiyama, Y., Ebina, M., Xu, Q., Tsuruta, S., Yazaki, J., et al. (2009). Analysis of expressed sequence tags in apomictic guineagrass (Panicum maximum). Journal of Plant Physiology, 166, 750–761.

    Article  CAS  Google Scholar 

  35. Tatsuka, M., Mitsui, H., Wada, M., Nagata, A., Nojima, H., & Okayama, H. (1992). Elongation factor-1 alpha gene determines susceptibility to transformation. Nature, 359, 333–336.

    Article  CAS  Google Scholar 

  36. Pessino, S. C., Ortiz, J. P. A., Leblanc, O., do Valle, C. B., Evans, C., & Hayward, M. D. (1997). Identification of a maize linkage group related to apomixis in Brachiaria. Theoretical Applied Genetics, 94, 439–444.

    Article  CAS  Google Scholar 

  37. Pupilli, F., Martinez, E. J., Busti, A., Calderini, O., Quarin, C. L., & Arcioni, S. (2004). Comparative mapping reveals partial conservation of synteny at the apomixis locus in Paspalum spp. Molecular Genetics and Genomics, 270, 539–548.

    Article  CAS  Google Scholar 

  38. Laspina, N. V., Vega, T., Seijo, J. G., Gonzalez, A. M., Martelotto, L. G., Stein, J., et al. (2008). Gene expression analysis at the onset of aposporous apomixis in Paspalum notatum. Plant Molecular Biology, 67, 615–628.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank the Director, National Institute of Plant Genome Research, Director, Indian Grassland and Fodder Research Institute, Jhansi, and Director, Central Rice Research Institute, Cuttack India for providing facilities. The authors gratefully acknowledge the financial support from the Department of Biotechnology, Government of India. The authors would also like to thank both the reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pankaj Kaushal or Manoj Prasad.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahu, P.P., Gupta, S., Malaviya, D.R. et al. Transcriptome Analysis of Differentially Expressed Genes During Embryo Sac Development in Apomeiotic Non-Parthenogenetic Interspecific Hybrid of Pennisetum glaucum . Mol Biotechnol 51, 262–271 (2012). https://doi.org/10.1007/s12033-011-9464-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9464-9

Keywords

Navigation