Skip to main content
Log in

Association studies and QTL mapping for soybean oil content and composition

  • Published:
Euphytica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Soybean oil is one of the most important vegetable oils in world. Increasing oil content and improve its composition is an important aim of many soybean breeding programs. In this context, the objective of this study was to identify QTLs controlling oil and fatty acid contents in soybean seed in different locations. For this, we developed F2-derived populations by crossing CS303TNKCA and FA22 lines, and analyzed oil and fatty acid content in four locations in Brazil. We evaluated the correlations of traits in each location and between locations and used 1536 SNPs to molecular characterize this population. QTLs associated with the average values of four environments were identified by using simple interval mapping. A linkage map was generated using 534 SNP markers, and 25 linkage groups were formed. A total of 20 QTLs controlling oil, palmitic, stearic, oleic, linoleic and linolenic contents were found, varying from one (linolenic content) to six (palmitic content), and explaining from 7.02% (qSte-13) to 70.37% (qLin-14) of phenotypic variation. We could not associate eight QTLs (qPal-02, qOle-02, qLol-02, qOle-04, qLol-04, qPal-13.2, qSte-15 and qSte-17) with reported QTLs and genes, so these could be set as new QTLs controlling fatty acid composition. The results found in the present work can help understand the genetic basis of these traits and help breeders to modify oil content and composition in soybean seed, especially in tropical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akond M, Yuan J, Liu S, Kantartzi SK et al (2018) Detection of QTL underlying seed quality components in soybean [Glycine max (L.) Merr.]. Can J Plant Sci 98:881–888

    Article  CAS  Google Scholar 

  • Alt JL, Fehr WR, Welke GA, Shannon JG (2005) Transgressive segregation for oleate content in three soybean populations. Crop Sci 45:2005–2007

    Article  CAS  Google Scholar 

  • ANP – Agência Nacional de Petróleo (2019) Matérias-primas utilizadas na produção de biodiesel (B100) no Brasil – 2009-2018. Tabela 4.13. http://www.anp.gov.br/publicacoes/anuario-estatistico/5237-anuario-estatistico-2019

  • Bachlava E, Burton JW, Brownie C, Wang S, Auclair J, Cardinal AJ (2008) Heritability of oleic acid content in soybean seed oil and its genetic correlation with fatty acid and agronomic traits. Crop Sci 48:1764–1772

    Article  CAS  Google Scholar 

  • Bachlava E, Dewey RE, Burton JW, Cardinal AJ (2009) Mapping and comparison of quantitative trait loci for oleic acid seed content in two segregating soybean populations. Crop Sci 49:433–442

    Article  CAS  Google Scholar 

  • Bachleda N, Pham A, Li Z (2016) Identifying FATB1a deletion that causes reduced palmitic acid content in soybean N87-2122-4 to develop a functional marker for marker-assisted selection. Mol Breed 36:45

    Article  CAS  Google Scholar 

  • Baud S, Lepiniec L (2010) Physiological and developmental regulation of seed oil production. Prog Lipid Res 49:235–249

    Article  CAS  PubMed  Google Scholar 

  • Bilyeu K, Palavalli L, Sleper D, Beuselinck P (2005) Mutations in soybean microsomal omega-3 fatty acid desaturase genes reduce linolenic acid concentration in soybean seeds. Crop Sci 45:1830–1836

    Article  CAS  Google Scholar 

  • Brazil (2016) Lei nº 13.263, de março de 2016

  • Bueno RD, Arruda KMA, Bhering LL, Gonccedil E et al (2013) Genetic parameters and genotype × environment interaction for productivity, oil and protein content in soybean. Afr J Agric Res 8:4853–4859

    Article  CAS  Google Scholar 

  • Bueno RD, God PIVG, Prata IO, Pereira PHS et al (2018) Association of candidate genes for fatty acid content in soybean by temperature-switch PCR (TSP) genotyping. Crop Breed Appl Biotechnol 18:244–251

    Article  CAS  Google Scholar 

  • Burkey KO, Booker FL, Pursley WA, Heagle AS (2007) Elevated carbon dioxide and ozone effects on peanut: II. Seed yield and quality. Crop Sci 47:1488–1497

    Article  CAS  Google Scholar 

  • Burton JW, Wilson RF, Brim CA (1983) Recurrent selection in soybeans. IV. Selection for increased oleic acid percentage in seed oil 1. Crop Sci 23:744–747

    Article  CAS  Google Scholar 

  • Burton JW, Wilson RF, Brim CA (1994) Registration of N79-2077-12 and N87-2122-4, two soybean germplasm lines with reduced palmitic acid in seed oil. Crop Sci 34:313

    Google Scholar 

  • Cao Y, Li S, Wang Z, Chang F et al (2017) Identification of major quantitative trait loci for seed oil content in soybeans by combining linkage and genome-wide association mapping. Front Plant Sci 8:1222

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardinal AJ, Burton JW, Camacho-Roger AM, Yang JH et al (2007) Molecular analysis of soybean lines with low palmitic acid content in the seed oil. Crop Sci 47:304–310

    Article  CAS  Google Scholar 

  • CONAB – Companhia Nacional De Abastecimento (2019) Acompanhamento Da Safra Brasileira de Grãos. Safra 2018/2019 5:11-20

  • Cruz CD (2013) Genes: a software package for analysis in experimental statistics and quantitative genetics. Acta Sci Agron 35:271–276

    Article  Google Scholar 

  • Fan S, Li B, Yu F, Han F et al (2015) Analysis of additive and epistatic quantitative trait loci underlying fatty acid concentrations in soybean seeds across multiple environments. Euphytica 206:689–700

    Article  CAS  Google Scholar 

  • Gillman JD, Stacey MG, Cui Y, Berg HR et al (2014) Deletions of the SACPD-C locus elevate seed stearic acid levels but also result in fatty acid and morphological alterations in nitrogen fixing nodules. BMC Plant Biol 14:143

    Article  PubMed  PubMed Central  Google Scholar 

  • Goettel W, Xia E, Upchurch R, Wang ML et al (2014) Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content. BMC Genom 15:299

    Article  CAS  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R et al (2011) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:1178–1186

    Article  CAS  Google Scholar 

  • Grant D, Nelson RT, Cannon SB, Shoemaker RC (2009) SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res 38:843–846

    Article  CAS  Google Scholar 

  • Gutierrez-Gonzalez JJ, Vuong TD, Zhong R, Yu O et al (2011) Major locus and other novel additive and epistatic loci involved in modulation of isoflavone concentration in soybean seeds. Theor Appl Genet 123:1375–1385

    Article  CAS  PubMed  Google Scholar 

  • Heim CB, Gillman JD (2017) Genotyping-by-sequencing-based investigation of the genetic architecture responsible for a sevenfold increase in soybean seed stearic acid. G3 Genes Genom Gene 7:299–308

    CAS  Google Scholar 

  • Hu FB, Stampfer MJ, Manson JE, Rimm E et al (1997) Dietary fat intake and the risk of coronary heart disease in women. N Engl J Med 337:1491–1499

    Article  CAS  PubMed  Google Scholar 

  • Hunter JE, Zhang J, Kris-Etherton PM (2009) Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: a systematic review. Am J Clin Nutr 91:46–63

    Article  PubMed  CAS  Google Scholar 

  • Hyten DL, Pantalone VR, Saxton AM, Schmidt ME et al (2004) Molecular mapping and identification of soybean fatty acid modifier quantitative trait loci. J Am Oil Chem Soc 81:1115–1118

    Article  CAS  Google Scholar 

  • Hyten DL, Choi IY, Song Q, Specht JE et al (2010) A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping. Crop Sci 50:960–968

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HK, Kim YC, Kim ST, Son BG et al (2010) Analysis of quantitative trait loci (QTLs) for seed size and fatty acid composition using recombinant inbred lines in soybean. J Life Sci 20:1186–1192

    Article  CAS  Google Scholar 

  • Kim SH, Ryu J, Kim WJ, Kang R et al (2019) Identification of a new GmSACPD-C allele in high stearic acid mutant Hfa180 derived from gamma-ray irradiation. Mol Breed 39:17

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leamy LJ, Zhang H, Li C, Chen CY et al (2017) A genome-wide association study of seed composition traits in wild soybean (Glycine soja). BMC Genom 18:18

    Article  CAS  Google Scholar 

  • Leffel RC (1994) Registration of BARC-12, a low linolenic acid soybean germplasm line. Crop Sci 34:1426–1427

    Article  Google Scholar 

  • Leite DC, Pinheiro JB, Campos JB, Di Mauro AO et al (2016) QTL mapping of soybean oil content for marker-assisted selection in plant breeding program. Genet Mol Res 15:01–11

    Google Scholar 

  • Li YH, Reif JC, Ma YS, Hong HL et al (2015) Targeted association mapping demonstrating the complex molecular genetics of fatty acid formation in soybean. BMC Genom 16:841

    Article  CAS  Google Scholar 

  • Li B, Fan S, Yu F, Chen Y et al (2017) High-resolution mapping of QTL for fatty acid composition in soybean using specific-locus amplified fragment sequencing. Theor Appl Genet 130:1467–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lilliefors HW (1967) On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J Am Stat Assoc Association 62:399–402

    Article  Google Scholar 

  • Maheshwari P, Kovalchuk I (2016) Genetic transformation of crops for oil production. In: Industrial oil crops, pp 379–412

  • Matei G, Meneguzzi C, Woyann LG, Todeschini MH et al (2018) Oil, protein and fatty acid profiles of Brazilian soybean cultivars in multi-environmental trials. Aust J Crop Sci 12:686–698

    Article  CAS  Google Scholar 

  • Monteros MJ, Burton JW, Boerma HR (2008) Molecular mapping and confirmation of QTLs associated with oleic acid content in N00-3350 soybean. Crop Sci 48:2223–2234

    Article  Google Scholar 

  • Naeve SL, Huerd SC (2008) Year, region, and temperature effects on the quality of Minnesota’s soybean crop. Agron J 100:690–695

    Article  Google Scholar 

  • Nodari RO, Tsail SM, Gilbertson RL, Gepts P (1993) Towards an integrated linkage map of common bean 2. Development of an RFLP-based linkage map. Theor Appl Genet 85:513–520

    Article  CAS  PubMed  Google Scholar 

  • Patterson E, Wall R, Fitzgerald GF, Ross RP et al (2012) Health implications of high dietary omega-6 polyunsaturated fatty acids. J Nutr Metab 2012

  • Pham AT, Lee JD, Shannon JG, Bilyeu KD (2010) Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biol 10:195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pham AT, Lee JD, Shannon JG, Bilyeu KD (2011) A novel FAD2-1 A allele in a soybean plant introduction offers an alternate means to produce soybean seed oil with 85% oleic acid content. Theor Appl Genet 123:793–802

    Article  CAS  PubMed  Google Scholar 

  • Pham AT, Shannon JG, Bilyeu KD (2012) Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil. Theor Appl Genet 125:503–515

    Article  CAS  PubMed  Google Scholar 

  • Pham AT, Bilyeu K, Chen P, Boerma HR et al (2014) Characterization of the fan1 locus in soybean line A5 and development of molecular assays for high-throughput genotyping of FAD3 genes. Mol Breed 33:895–907

    Article  CAS  Google Scholar 

  • Pinto MDO, Good-God PIV, Moreira MA, Barros EGD (2013) Associação de marcadores moleculares SNP com o conteúdo de ácido linolênico em sementes de soja. Pesqui Agropecu Bras 48:263–269

    Article  Google Scholar 

  • Priolli RHG, Campos JB, Stabellini NS, Pinheiro JB et al (2015) Association mapping of oil content and fatty acid components in soybean. Euphytica 203:83–96

    Article  CAS  Google Scholar 

  • Priolli RHG, Carvalho CRL, Bajay MM, Pinheiro JB et al (2019) Genome analysis to identify SNPs associated with oil content and fatty acid components in soybean. Euphytica 215:54

    Article  CAS  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reinprecht Y, Poysa VW, Yu K, Rajcan I et al (2006) Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Genome 49:1510–1527

    Article  CAS  PubMed  Google Scholar 

  • Reinprecht Y, Luk-Labey SY, Larsen J, Poysa VW et al (2009) Molecular basis of the low linolenic acid trait in soybean EMS mutant line RG10. Plant Breed 128:253–258

    Article  CAS  Google Scholar 

  • Resende MDVD (2016) Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breed Appl Biotechnol 16:330–339

    Article  Google Scholar 

  • Rocha MDM, Vello NA, Lopes ADA, Maia MCC (2009) Estabilidade e adaptabilidade produtiva em linhagens de soja de ciclo médio. Rev Ceres 56:764–771

    Google Scholar 

  • Seo JH, Kim KS, Ko JM, Choi MS et al (2019) Quantitative trait locus analysis for soybean (Glycine max) seed protein and oil concentrations using selected breeding populations. Plant Breed 138:95–104

    Article  CAS  Google Scholar 

  • Shu YJ, Yu DS, Wang D, Bai X et al (2013) Genomic selection of seed weight based on low-density SCAR markers in soybean. Genet Mol Res 12:2178–2188

    Article  CAS  PubMed  Google Scholar 

  • Silva LC, Souza TLPO, Cruz CD, Carneiro PCS et al (2018a) Linkage fine-mapping and QTLs affecting morpho-agronomic traits of a Mesoamerican × Andean RIL common bean population. Euphytica 214:221

    Article  CAS  Google Scholar 

  • Silva LCC, Bueno RD, da Matta LB, Pereira PHS et al (2018b) Characterization of a new GmFAD3A allele in Brazilian CS303TNKCA soybean cultivar. Theor Appl Genet 131:1099–1110

    Article  CAS  PubMed  Google Scholar 

  • Silva LCC, Mota LM, Fonseca LABV, Bueno RD et al (2019) Effect of a mutation in Raffinose Synthase 2 (GmRS2) on soybean quality traits. Crop Breed Appl Biotechnol 19:62–69

    Article  CAS  Google Scholar 

  • Smallwood CJ, Gillman JD, Saxton AM, Bhandari HS et al (2017) Identifying and exploring significant genomic regions associated with soybean yield, seed fatty acids, protein and oil. J Crop Sci Biotech 20:243–253

    Article  Google Scholar 

  • Thapa R, Carrero-Colón M, Hudson KA (2016) New alleles of FATB1A to reduce palmitic acid levels in soybean. Crop Sci 56:1076–1080

    Article  CAS  Google Scholar 

  • USDA (2019) Oilseeds: World markets and trade. August 2019

  • Vogel PA, de Noyer BS, Park H, Nguyen H et al (2019) Expression of the Arabidopsis WRINKLED 1 transcription factor leads to higher accumulation of palmitate in soybean seed. Plant Biotechnol J 17:1369–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuong TD, Walker DR, Nguyen BT, Nguyen TT et al (2016) Molecular characterization of resistance to soybean rust (Phakopsora pachyrhizi Syd. & Syd.) in soybean cultivar DT 2000 (PI 635999). PLoS ONE 11:e0164493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang W, Huang S, Liu Y, Fang Z et al (2012a) Construction and analysis of a high-density genetic linkage map in cabbage (Brassica oleracea L. var. capitata). BMC Genom 13:523

    Article  CAS  Google Scholar 

  • Wang X, Jiang GL, Green M, Scott RA et al (2012b) Quantitative trait locus analysis of saturated fatty acids in a population of recombinant inbred lines of soybean. Mol Breed 30:1163–1179

    Article  Google Scholar 

  • Wang X, Jiang G-L, Green M, Scott RA et al (2014) Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean. Mol Genet Genomics 289:935–949

    Article  CAS  PubMed  Google Scholar 

  • Warner K, Fehr W (2008) Mid-oleic/ultra low linolenic acid soybean oil: a healthful new alternative to hydrogenated oil for frying. J Am Oil Chem Soc 85:945–951

    Article  CAS  Google Scholar 

  • Weselake RJ, Taylor DC, Rahman MH, Shah S et al (2009) Increasing the flow of carbon into seed oil. Biotechnol Adv 27:866–878

    Article  CAS  PubMed  Google Scholar 

  • Woyann LG, Meira D, Zdziarski AD, Matei G et al (2019) Multiple-trait selection of soybean for biodiesel production in Brazil. Ind Crop Prod 140:111721

    Article  CAS  Google Scholar 

  • Yu M, Liu Z, Jiang S, Xu N et al (2018) QTL mapping and candidate gene mining for soybean seed weight per plant. Biotechnol Biotec Eq 32:908–914

    Article  CAS  Google Scholar 

  • Zhang J, Wang X, Lu Y, Bhusal SJ (2018) Genome-wide scan for seed composition provides insights into soybean quality improvement and the impacts of domestication and breeding. Mol Plant 11:460–472

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Jiang H, Feng L, Qu Y et al (2019) Genome-wide association and transcriptional studies reveal novel genes for unsaturated fatty acid synthesis in a panel of soybean accessions. BMC Genom 20:68

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico for granting Doctoral Scholarships and Fundação de Amparo à Pesquisa do Estado de Minas Gerais for financial support (Grant APQ-01416-16 and PPM-640-18 to MD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Cláudio Costa Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Luiz Cláudio Costa Silva and Lorêta Buuda da Matta have contributed equally to this work.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.C.C., da Matta, L.B., Pereira, G.R. et al. Association studies and QTL mapping for soybean oil content and composition. Euphytica 217, 24 (2021). https://doi.org/10.1007/s10681-020-02755-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-020-02755-y

Keywords

Navigation