Skip to main content
Log in

Genetic investigation and cytological comparison of two genic male sterile lines 9012A and MSL in Brassica napus L.

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Genic male sterility (GMS) is one of the effective pollination control systems in hybrid rapeseed (Brassica napus L.) breeding. The recessive GMS lines 9012A and Lembke (MSL) have made a great contribution to the utilization of heterosis in rapeseed. Cytological observation and genetic investigation were employed to reveal anther abortion characters and genetic relationship of 9012A and MSL. Cytological and transmission electron microscopy observation revealed that anther abortion of 9012A and MSL initiated at the microsporocyte stage, both lines showed premature or retarded degradation of tapetum. Some anthers in 9012A developed to the microspore stage since their tapetal cells changed to the secretory type. However, MSL anthers did not progress to the tetrad stage, since the tapetum did not change to the secretory type. Genetic investigation revealed that MSL and 9012A had the same temporary maintainer system, while their cytoplasm types were different. The cytoplasm of MSL was similar to Cam while 9012A was similar to Nap type. The results laid a solid foundation for utilization of the two male sterile lines in rapeseed hybrid breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ariizumi T, Toriyama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol 62:437–460

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Hu B, Li Q (1993) Discovery and study of genic male sterility (GMS) material 9012A in Brassica napus L. Acta Agric Univ Pekin 19:57–61

    CAS  Google Scholar 

  • Chen F, Hu B, Li C, Li Q, Chen W, Zhang M (1998) Genetic studies on GMS in Brassica napus L. I. inheritance of recessive GMS line 9012A. Acta Agron Sin 24:431–438

    Google Scholar 

  • Deng Z, Li X, Wang Z, Jiang Y, Wan L, Dong F, Chen F, Hong D, Yang G (2016) Map-based cloning reveals the complex organization of the BnRf locus and leads to the identification of BnRf b, a male sterility gene, in Brassica napus. Theor Appl Genet 129:53–64

    Article  PubMed  CAS  Google Scholar 

  • Dong F, Hong D, Liu P, Xie Y, He Q, Yang G (2010) A novel genetic model for recessive genic male sterility line 9012AB in rapeseed (Brassica napus L.). J Huazhong Agric Univ 29:262–267

    CAS  Google Scholar 

  • Dong F, Hong D, Xie Y, Wen Y, Dong L, Liu P, He Q, Yang G (2012) Molecular validation of a multiple-allele recessive genic male sterility locus (BnRf) in Brassica napus L. Mol Breed 30:1193–1205

    Article  CAS  Google Scholar 

  • Dun X, Zhou Z, Xia S, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T (2011) BnaC.Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus. Plant J 68:532–545

    Article  PubMed  CAS  Google Scholar 

  • Dun X, Shen W, Hu K, Zhou Z, Xia S, Wen J, Yi B (2014) Neofunctionalization of duplicated Tic40 genes caused a gain-of-function variation related to male fertility in Brassica oleracea Lineages. Plant Physiol 166:1403–1419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frauen M, Noack J, Paulmann W, Grosse F (2003) Development and perspectives of MSL-hybrids in winter oilseed rape in Europe. In: Proceedings 11th international rapeseed congress, pp 316–318

  • Frauen M, Noack J, Girke A, Paulmann W (2006) Ten years experience of development and cultivation of winter oilseed rape hybrids in Europe based on the MSL system. In: Fu DD, Guan CY (eds) Proceedings of the 12th international rapeseed congress, vol I: Genet Breeding, Wuhan, China, 26–30 March. Science Press USA Inc, pp 39–41

  • Fu T (2009) Considerations on heterosis utilization in rapeseed (Brassica napus). In: 16th Australian research assembly on Brassicas, pp 3–5

  • He J, Ke L, Hong D, Xie Y, Wang G, Liu P, Yang G (2008) Fine mapping of a recessive genic male sterility gene (Bnms3) in rapeseed (Brassica napus) with AFLP- and Arabidopsis-derived PCR markers. Theor Appl Genet 117:11–18

    Article  PubMed  CAS  Google Scholar 

  • Hou G, Wang H, Zhang R (1990) Genetic study on genic male sterility (GMS) material No. 117 in Brassica napus. Chin J Oil Crop Sci 2:7–10

    Google Scholar 

  • Huang Z, Chen Y, Yi B, Xiao L, Ma C, Tu J, Fu T (2007) Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theor Appl Genet 115:113–118

    Article  PubMed  CAS  Google Scholar 

  • Kawanabe T, Ariizumi T, Kawai-Yamada M, Uchimiya H, Toriyama K (2006) Abolition of the tapetum suicide program ruins microsporogenesis. Plant Cell Physiol 47:784–787

    Article  PubMed  CAS  Google Scholar 

  • Ke L, Sun Y, Liu P, Yang G (2004) Identification of AFLP fragments linked to one recessive genic male sterility (RGMS) in rapeseed (Brassica napus L.) and conversion to SCAR markers for marker-aided selection. Euphytica 138:163–168

    Article  CAS  Google Scholar 

  • Ke L, Sun Y, Liu P, Yang G (2005) Identification of AFLP markers linked to one recessive genic male sterility gene in oilseed rape, Brassica napus. Plant Breed 124:367–370

    Article  CAS  Google Scholar 

  • Li S, Qian Y, Wu Z (1985) Inheritance of genic male sterility in Brassica napus and its application to commercial production. Acta Agric Shanghai 1:1–12

    Google Scholar 

  • Li S, Zhou X, Zhou Z, Qian Y (1990) Inheritance of genetic male sterility (GMS) and its utilization in rape (Brassica napus L.). Crop Res 4:27–32

    Google Scholar 

  • Li S, Zhou Z, Zhou X (1993) Inheritance of recessive genic male sterile line “S45AB” of rape (Brassica napus L.). Acta Agric Shanghai 9:1–7

    Google Scholar 

  • Li N, Liu H, Yin C, Li X, Liang W, Yuan Z, Xu B, Chu H, Wang J, Wen T, Huang H (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18:2999–3014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, Hu SW, Li W, Yu CY (2010) Breeding of RGMS lines and investigation on their cytology in Brassica napus L. J Northwest A&F Univ 38(1):111–118

    Google Scholar 

  • Li J, Hong D, He J, Ma L, Wan L, Liu P, Yang G (2012) Map-based cloning of a recessive genic male sterility locus in Brassica napus L. and development of its functional marker. Theor Appl Genet 125:223–234

    Article  PubMed  CAS  Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2010) Acyl-lipid metabolism. Arabidopsis Book 8:e0133

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy DJ (2012) The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma 249:541–585

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pan T, Zeng F, Wu S, Zhao Y (1988) A study on the breeding and application GMS line of low eruci acid in rapeseed (B. napus). Chin J Oil Crop Sci 3:5–8

    Google Scholar 

  • Shivanna KR, Tandon R (2014) Reproductive ecology of flowering plants: a manual. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2003-9

    Book  Google Scholar 

  • Tian H, Channa SA, Hu S (2017) Relationships between genetic distance, combining ability and heterosis in rapeseed (Brassica napus L.). Euphytica 49:125–132

    Google Scholar 

  • Tu J, Fu T, Zheng Y (1997) Analyses on inheritance and isolocus of the rapeseed GMS 90-2441A (B. napus). J Huazhong Agric Univ 16:255–258

    Google Scholar 

  • Uyttewaal M, Gonza P (2008) A light and electron microscopy analysis of the events leading to male sterility in Ogu-INRA CMS of rapeseed (Brassica napus). J Exp Bot 59:827–838

    Article  PubMed  CAS  Google Scholar 

  • Vizcay-Barrena G, Wilson ZA (2006) Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J Exp Bot 57:2709–2717

    Article  PubMed  CAS  Google Scholar 

  • Wan L, Xia X, Hong D, Li J, Yang G (2010) Abnormal vacuolization of the tapetum during the tetrad stage is associated with male sterility in the recessive genic male sterile Brassica napus L. line 9012A. J Plant Biol 53:121–133

    Article  Google Scholar 

  • Xia S, Wang Z, Zhang H, Hu K, Zhang Z, Qin M, Dun X, Yi B, Wen J, Ma C, Shen J, Fu T, Tu J (2016) Altered transcription and neofunctionalization of duplicated genes rescue the harmful effects of a chimeric gene in Brassica napus. Plant Cell 28:2060–2078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao L, Yi B, Chen Y, Huang Z, Chen W, Ma C, Tu J, Fu T (2008) Molecular markers linked to Bn;rf: a recessive epistatic inhibitor gene of recessive genic male sterility in Brassica napus L. Euphytica 164:377–384

    Article  CAS  Google Scholar 

  • Xiao Z, Xin X, Chen H, Hu S (2013) Cytological investigation of anther development in DGMS line Shaan-GMS in Brassica napus L. Czech J Genet Plant Breed 49:16–23

    Article  Google Scholar 

  • Xie Y, Dong F, Hong D, Wan L, Liu P, Yang G (2012) Exploiting comparative mapping among Brassica species to accelerate the physical delimitation of a genic male-sterile locus (BnRf) in Brassica napus. Theor Appl Genet 125:211–222

    Article  PubMed  Google Scholar 

  • Yang G, Qu B, Fu T (1999) Cytological study of microsporogenesis in three recessive genic male sterile lines of Brassica napus L. J Huazhong Agric Univ 18:520–530

    CAS  Google Scholar 

  • Zhao H, Li Z, Hu S, Sun GL (2010) Identification of cytoplasm types in rapeseed (Brassica napus L.) accessions by a multiplex PCR assay. Theor Appl Genet 121:643–650

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Dun X, Zhou Z, Xia S, Yi B, Wen J, Shen J, Ma C, Tu J, Fu T (2010) A separation defect of tapetum cells and microspore mother cells results in male sterility in Brassica napus: the role of abscisic acid in early anther development. Plant Mol Biol 72:111–123

    Article  PubMed  CAS  Google Scholar 

  • Zu F, Xia S, Dun X, Zhou Z, Zeng F, Yi B, Wen J, Ma C, Shen J, Tu J, Fu T (2010) Analysis of genetic model for a recessive genic male sterile line 7-7365AB in Brassica napus L. based on molecular markers. Sci Agric Sin 43:3067–3075

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Miroslav Klima for kindly providing the hybrid rapeseed Marthow, Xiaohua He for technical assistance. This work was supported by the earmarked fund for China Agriculture Research System (CARS-13), and Tang Zhongyin breeding foundation of Northwest A&F University. The authors are grateful to anonymous reviewers for critical reading of the manuscript and their valuable suggestions.

Author information

Authors and Affiliations

Authors

Contributions

SH conceived and designed research. CL performed the experiments. CL and SH analyzed the data. CL, YS and SH wrote the manuscript. SH, CL, YZ, YG and MK discussed and edited the manuscript. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Shengwu Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 499 kb)

Supplementary material 2 (DOCX 583 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, C., Sun, Y., Zhang, Y. et al. Genetic investigation and cytological comparison of two genic male sterile lines 9012A and MSL in Brassica napus L.. Euphytica 214, 124 (2018). https://doi.org/10.1007/s10681-018-2207-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-018-2207-2

Keywords

Navigation