Skip to main content
Log in

Map-based cloning of a recessive genic male sterility locus in Brassica napus L. and development of its functional marker

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

We previously mapped one male-sterile gene (Bnms3) from an extensively used recessive genic male sterility line (9012AB) in Brassica napus to a 0.14-cM genomic region. In this study, two highly homologous BAC contigs possibly containing the candidate BnMs3 gene were identified using a map-based cloning strategy. A BnMs3-linked SCAR marker (DM1) capable of differentiating the subgenomes between B. rapa and the B. oleracea aided mapping of BnMs3 on the contig derived from the B. napus chromosome C9. One representative BAC clone was sequenced from each of the two contigs and resulted in a larger number of markers according to the sequence difference between the two clones. To isolate BnMs3, these markers were then analyzed in another two BC1 populations with different genetic backgrounds. This assay allowed for a delimitation of the mutated functional region of BnMs3 to a 9.3-kb DNA fragment. Gene prediction suggested that one complete open reading frame (ORF, ORF2) and partial CDS fragments of ORF1 and ORF3 reside in this fragment. Sequence comparison and genetic transformation eventually indicated that ORF1 (designated as BnaC9.Tic40), an analogue of the Arabidopsis gene AT5G16620 which encodes a translocon of the inner envelope of chloroplasts 40 (Tic40), is the only candidate gene of BnMs3. Furthermore, two distinct mutation types in ORF1 both causing the male-sterile phenotype were individually revealed from 9012A and the temporary maintainer line T45. The molecular mechanism of this male sterility as well as the application of BnMs3-associated functional and cosegregated markers in true breeding programs was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Brown GG, Formanuvá N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang JF, Cheung WY, Landry BS (2003) The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J 35:262–272

    Article  PubMed  CAS  Google Scholar 

  • Cardoza V, Stewart CN (2003) Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep 21:599–604

    PubMed  CAS  Google Scholar 

  • Chen FX, Hu BC, Li QS (1993) Discovery and study of genic male sterility (GMS) material 9012A in Brassica napus L (in Chinese). Acta Agric Univ Pekinensis 19(Suppl):57–61

    CAS  Google Scholar 

  • Chen FX, Hu BC, Li C, Li QS, Chen WS, Zhang ML (1998) Genetic studies on GMS in Brassica napus L: I. Inheritance of recessive GMS line 9012A. Acta Agron Sin 24:431–438

    Google Scholar 

  • Desloire S, Gherbi H, Laloui W, Marhadour S, Clouet V, Cattolico L, Falentin C, Giancola S, Renard M, Budar F, Small I, Caboche M, Delourme R, Bendahmane A (2003) Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep 4:588–594

    Article  PubMed  CAS  Google Scholar 

  • Dong FM, Hong DF, Liu PW, Xie YZ, He QB, Yang GS (2010) A novel genetic model for recessive genic male sterility line 9012AB in rapeseed (Brassica napus L.). J Huazhong Agric Univ 29:262–267

    CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dun XL, Zhou ZF, Xia SQ, Wen J, Yi B, Shen JX, Ma CZ, Tu JX, Fu TD (2011) BnaC.Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus. Plant J 68:532–545

    Article  PubMed  CAS  Google Scholar 

  • Formanová N, Li XQ, Alison MRF, DePauw M, Keller WA, Landry B, Brown GG (2006) Towards positional cloning in Brassica napus: generation and analysis of doubled haploid B. rapa possessing the B. napus pol CMS and Rfp nuclear restorer gene. Plant Mol Biol 61:269–281

    Article  PubMed  Google Scholar 

  • Frauen M, Noack J, Girke A, Paulmann W (2007) Ten years experience of development and cultivation of winter oilseed rape hybrids in Europe based on the MSL system Poc 12th Int Rapeseed Congress, Wuhan, China

  • He JP, Ke LP, Hong DF, Xie YZ, Wang GC, Liu PW, Yang GS (2008) Fine mapping of a recessive genic male sterility gene (Bnms3) in rapeseed (Brassica napus) with AFLP- and Arabidopsis-derived PCR markers. Theor Appl Genet 117:11–18

    Article  PubMed  CAS  Google Scholar 

  • Howell EC, Kearsey MJ, Jones GH, King GJ, Armstrong SJ (2008) A and C genome distinction and chromosome identification in Brassica napus by sequential fluorescence in situ hybridization and genomic in situ hybridization. Genetics 180:1849–1857

    Article  PubMed  CAS  Google Scholar 

  • Huang Z, Chen YF, Yi B, Xiao L, Ma CZ, Tu JX, Fu TD (2007) Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theor Appl Genet 115:113–118

    Article  PubMed  CAS  Google Scholar 

  • Ke LP, Sun YQ, Hong DF, Liu PW, Yang GS (2005) Identification of AFLP markers linked to one recessive genic male sterility gene in oilseed rape, Brassica napus L. Plant Breed 124:367–370

    Article  CAS  Google Scholar 

  • Le Cunff L, Garsmeur O, Marie Raboin L et al (2008) Diploid/polyploid syntenic shuttle mapping and haplotype-specific chromosome walking toward a rust resistance gene (Bru1) in highly polyploid sugarcane (2n ~ 12x ~ 115). Genetics 180:649–660

    Article  PubMed  Google Scholar 

  • Li HM, Chiu CC (2010) Protein transport into chloroplasts. Annu Rev Plant Biol 61:157–180

    Article  PubMed  CAS  Google Scholar 

  • Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Beom-Seok Park, Choi SR, Lim YP, Meng J (2007) Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics 177:2433–2444

    PubMed  CAS  Google Scholar 

  • Lu S, Eck JV, Zhou XJ et al (2006) The cauliflower Or gene encodes a DnaJ Cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation. Plant Cell 18:3594–3605

    Article  PubMed  CAS  Google Scholar 

  • Lysak MA, Koch MA, Beaulieu JM, Meister A, Leitch IJ (2009) The dynamic ups and downs of genome size evolution in Brassicaceae. Mol Biol Evol 26:85–98

    Article  PubMed  CAS  Google Scholar 

  • Mariani C, Gossele V, De Beuckeleer M, De Block M, Goldberg RB, De Greef W, Leemans J (1992) A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature 357:384–387

    Article  CAS  Google Scholar 

  • Muangprom A, Osborn TC (2004) Characterization of a dwarf gene in Brassica rapa, including the identification of a candidate gene. Theor Appl Genet 108:1378–1384

    Article  PubMed  CAS  Google Scholar 

  • Ogura H (1968) Studies on the male sterility in Japanese radish, with special references to the utilization of this sterility towards practical raising of hybrid seed. Mem Fac Agric Kagoshima Univ 6:39–78

    Google Scholar 

  • Osborn TC, Butrulle DV, Sharpe AG, Pickering KJ, Parkin IAP, Parker JS, Lydiate DJ (2003) Detection and effects of a homeologous reciprocal transposition in Brassica napus. Genetics 165:1569–1577

    PubMed  CAS  Google Scholar 

  • Ostergaard L, King GJ (2008) Standardized gene nomenclature for the Brassica genus. Plant Methods 4:10

    Article  PubMed  Google Scholar 

  • Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V, Pradhan AK, Pental D (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Gemomics 9:113

    Article  Google Scholar 

  • Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  PubMed  CAS  Google Scholar 

  • Rana DT, van den Boogaart T, O’Neill CM, Hynes L, Bent E, Macpherson L, Park JY, Lim YP, Bancroft I (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J 40:725–733

    Article  PubMed  CAS  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11(11):535–542

    Article  PubMed  CAS  Google Scholar 

  • Stiewe G, Pleines S, Coque M, Gielen J (2010) New hybrid system for Brassica napus. US patent application 20100222605

  • Su PH, Li HM (2010) Stromal Hsp70 is important for protein translocation into Pea and Arabidopsis chloroplasts. Plant cell 22:1516–1531

    Article  PubMed  CAS  Google Scholar 

  • Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ, Vigouroux M, Trick M, Bancroftb I (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348–1359

    Article  PubMed  CAS  Google Scholar 

  • Viana AAB, Li M, Schnell DJ (2010) Determinants for stop-transfer and post-import pathways for protein targeting to the chloroplast inner envelope membrane. J Biol Chem 285:12948–12960

    Article  PubMed  CAS  Google Scholar 

  • Wan LL, Xia XY, Hong DF, Li J, Yang GS (2010) Abnormal vacuolization of the tapetum during the tetrad stage is associated with male sterility in the recessive genic male sterile Brassica napus L. line 9012A. J. Plant Biol 53:121–133

    Article  Google Scholar 

  • Wang GC, He JP, Hong DF, Xie YZ, Xu ZH, Liu PW, Yang GS (2007) Development of AFLP and SCAR markers linked to a recessive genic male sterile gene (ms3) in rapeseed for marker-assisted selection. Korean J Genetics 29:481–487

    CAS  Google Scholar 

  • Wang J, Long Y, Wu BD, Liu J, Jiang CC, Shi L, Zhao JW, King GJ, Meng JL (2009) The evolution of Brassica napus FLOWERING LOCUST paralogues in the context of inverted chromosomal duplication blocks. BMC Evol Biol 9:27

    Article  CAS  Google Scholar 

  • Wang J, Lydiate DJ, Parkin IAP, Falentin C, Régine Delourme, Carion PWC, King GJ (2011) Integration of linkage maps for the amphidiploids Brassica napus and comparative mapping with Arabidopsis and Brassica rapa. BMC Genomics 12:101

    Article  PubMed  CAS  Google Scholar 

  • Williams ME, Lecmans J, Michiels F (1997) Male sterility through recombinant DNA technology. In: Shivanna KR, Sawhney VK (eds) Pollen biotechnology for crop production and improvement. Cambridge Univ Press, London, pp 237–257

    Chapter  Google Scholar 

  • Xiao L, Yi B, Chen YF, Huang Z, Chen W, Ma CZ, Tu JX, Fu TD (2008) Molecular markers linked to Bn;rf: a recessive epistatic inhibitor gene of recessive genic male sterility in Brassica napus L. Euphytica 164:377–384

    Article  CAS  Google Scholar 

  • Xie YZ, Hong DF, Xu ZH, Liu PW, Yang GS (2008) Identification of AFLP markers linked to the epistatic suppressor gene of a recessive genic male sterility in rapeseed and conversion to SCAR markers. Plant Breed 127:145–149

    Article  CAS  Google Scholar 

  • Xu ZH, Xie YZ, Hong DF, Liu PW, Yang GS (2009) Fine mapping of the epistatic suppressor gene (esp) of a recessive genic male sterility in rapeseed (Brassica napus L.). Genome 52:755–760

    Article  PubMed  CAS  Google Scholar 

  • Yang GS, Fu TD (1987) Environment effects on the cytoplasmic male sterility of rapeseed (Brassica napus and Brassica campestris). Oil Crops of China 3:15–19

    Google Scholar 

  • Yang GS, Qu B, Fu TD (1999) Cytological study of microsporogenesis in three recessive genic male sterile lines of Brassica napus L. J Huazhong Agric Univ 18:520–530

    CAS  Google Scholar 

  • Yi B, Zeng FQ, Lei SL, Chen YN, Yao XQ, Zhu Y, Wen J, Shen JX, Ma CZ, Tu JX, Fu TD (2010) Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Plant J 63:925–938

    Article  PubMed  CAS  Google Scholar 

  • Zu F, Xia SQ, Dun XL, Zhou ZF, Zeng FQ, Yi B, Wen J, Ma CZ, Shen JX, Tu JX, Fu TD (2010) Analysis of genetic model for a recessive genic male sterile line 7–7365AB in Brassica napus L. based on molecular markers. Scientia Agricultura Sinica 43:3067–3075

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. Jinling Meng for kindly providing the BAC clones of the JBnB BAC library and genomic DNA of Tapidor as well as eight B. oleracea lines. We also thank Prof. Kede Liu for providing the genomic DNA of 50 B. rapa lines used in this research and Dr. Zhixiong Fan for providing the genomic DNA of the temporary maintainer line 9012B-6DH. This research was supported by Natural Science Foundation of China (30670123, 31170166) and National High-tech R&D Program of China (2011AA10A104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangsheng Yang.

Additional information

Communicated by H. Becker.

J. Li and D. Hong contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 534 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Hong, D., He, J. et al. Map-based cloning of a recessive genic male sterility locus in Brassica napus L. and development of its functional marker. Theor Appl Genet 125, 223–234 (2012). https://doi.org/10.1007/s00122-012-1827-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1827-5

Keywords

Navigation