Skip to main content
Log in

A separation defect of tapetum cells and microspore mother cells results in male sterility in Brassica napus: the role of abscisic acid in early anther development

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Male sterility is an important contributor to heterosis in Brassica napus L. The B. napus line 7-7365ABC is a recessive epistatic genic male sterile (REGMS) three-line system. The 7-7365A line with the genotype Bnms3ms3ms4ms4RfRf is male-sterile, while the 7-7365B line with the genotype BnMs3ms3ms4ms4RfRf is male-fertile, and 7-7365C with homozygous recessive genotypes at the three loci shows male fertility because the loss function of Bnrf gene causes the inhibition of the genetic trait of the double mutant Bnms3 Bnms4. Histological studies addressing male sterility, transcriptional regulation pathways and the role of abscisic acid (ABA) in the anther development of REGMS plants are reported here. In the male-sterile line 7-7365A, tapetum cell and microspore mother cell separation were affected, and this led to failure of microspore release. The activity of polygalacturonase and the expression of the pectin methylesterase gene (AT3g06830) were significantly downregulated. Nine genes were downregulated in 7-7365A compared to 7-7365B and 7-7365C, including genes specifically expressed in tapetum (A3, A9, MS1) and the ABA-responsive gene KIN1. ABA concentration in 7-7365B was significantly higher than in 7-7365A and 7-7365C in young flower buds. Furthermore, temperature treatment made some sterile 7-7365A flowers become fertile. The stamens in these flowers produced viable pollen, and filament elongation was restored to its level in 7-7365C. We propose that ABA might control the expression of genes involved in cell separation during early anther development. The REGMS phenotype could be controlled by a primary pathway of male sterile metabolism positively regulated by the BnMs3 gene and a supplementary pathway negatively regulated by the BnRf gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander MP (1969) Differential staining of aborted and nonaborted pollen. Stain Technol 44(3):117–122

    CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Alves-Ferreira M, Wellmer F, Banhara A, Kumar V, Riechmann JL, Meyerowitz EM (2007) Global expression profiling applied to the analysis of Arabidopsis stamen development. Plant Physiol 145(3):747–762

    Google Scholar 

  • Ariizumi T, Hatakeyama K, Hinata K, Sato S, Kato T, Tabata S, Toriyama K (2005) The HKM gene, which is identical to the MS1 gene of Arabidopsis thaliana, is essential for primexine formation and exine pattern formation. Sex Plant Reprod 18:1–7

    Article  CAS  Google Scholar 

  • Blackmore S, Crane PR (1998) The evolution of apertures in the spores and pollen grains of embryophytes. In: Owens SJ, Rudall PJ (eds) Reproductive biology in systematics, conservation and economic botany. Royal Botanic Gardens, Kew, pp 159–182

    Google Scholar 

  • Brocard-Gifford I, Lynch TJ, Garcia ME, Malhotra B, Finkelstein RR (2004) The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 locus encodes a novel protein mediating abscisic acid and sugar responses essential for growth. Plant Cell 16:406–421

    Article  CAS  PubMed  Google Scholar 

  • Canales C, Bhatt A, Scott R, Dickinson H (2002) EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol 12(20):1718–1727

    Article  CAS  PubMed  Google Scholar 

  • Cavell AC, Lydiate DJ, Parkin IAP, Dean C, Trick M (1998) Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome 41:62–69

    Article  CAS  PubMed  Google Scholar 

  • Chandra Sekhar KN, Sawney VK (1991) Role of ABA in stamen and pistel development in the normal and solanifolia mutant of tomato (Lycopersicom esculentum). Sex Plant Reprod 4:279–283

    Article  Google Scholar 

  • Chen FX, Hu BC, Li C, Li QS, Chen WS, Zhang ML (1998a) Genetic studies on GMS in Brassica napus L. I. Inheritance of recessive GMS line 9012A. Acta Agron Sin 24:431–438

    Google Scholar 

  • Chen JN, Fu HY, Lu ZX, Qing HY, Qu J, Que Q, Cao SY (1998b) Temperature, heat shock proteins and fertility change of sorghum. Acta Genet Sin 25(4):356–361

    CAS  Google Scholar 

  • Dong X, Hong Z, Sivaramakrishnan M, Mahfouz M, Verma DP (2005) Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. Plant J 42:315–328

    Article  CAS  PubMed  Google Scholar 

  • Francis KE, Lam SandyY, Gregory P (2006) Copenhaver separation of arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene1. Plant Physiol 142(3):1004–1013

    Article  CAS  PubMed  Google Scholar 

  • Fu TD, Tu JX (2002) Present situation and prospects on the research and utilization of hybrid rapeseed (in Chinese). In: Liu HL (ed) Analects of crop breeding. China Agricultural University Press, Beijing, pp 235–250

    Google Scholar 

  • Girke T, Todd J, Ruuska S, White J, Benning C, Ohlrogge J (2000) Microarray analysis of developing Arabidopsis seeds. Plant Physiol 124:1570–1581

    Article  CAS  PubMed  Google Scholar 

  • Hird DL, Worrall D, Hodge R, Smartt S, Paul W, Scott R (1993) The anther-specific protein encoded by the Brassica napus and Arabidopsis thaliana A6 gene displays similarity to beta-1, 3-glucanases. Plant J 4:1023–1033

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Chen YF, Yi B, Xiao L, Ma CZ, Tu JX, Fu TD (2007) Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theor Appl Genet 115:113–118

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Shinozaki K (2002) The MALE STERILITY1 gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in tapetal cells and is required for pollen maturation. Plant Cell Physiol 43:1285–1292

    Article  CAS  PubMed  Google Scholar 

  • Jia G, Liu X, Owen HA, Zhao D (2008) Signaling of cell fate determination by the TPD1 small protein and EMS1 receptor kinase. PNAS 105(6):2220–2225

    Article  CAS  PubMed  Google Scholar 

  • Kang JG, Zhang GY, Guusje B, Fang ZY, Wang XW (2008) Global analysis of gene expression in flower buds of Ms-cd1 Brassica oleracea conferring male sterility by using an Arabidopsis microarray. Plant Mol Biol 66:177–192

    Article  CAS  PubMed  Google Scholar 

  • Knox JP, Linstead PJ, King J, Cooper C, Roberts K (1990) Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta 181:512–521

    Article  CAS  Google Scholar 

  • Konagaya KI, Ando S, Kamachi S, Tsuda M, Tabei Y (2008) Efficient production of genetically engineered, male-sterile Arabidopsis thaliana using anther-specific promoters and genes derived from Brassica oleracea and B. rapa. Plant Cell Rep 27:1741–1754

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Wang J, Tian L et al (2004) Sensitivity of 70-meroligonucleotides and cDNAs for microarray analysis of gene expression in Arabidopsis and its related species. Plant Biotechnol J 2:45–57

    Article  CAS  PubMed  Google Scholar 

  • Li N, Zhang DS, Liu HS (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18:2999–3014

    Article  CAS  PubMed  Google Scholar 

  • Oliver SN, Dennis ES, Dolferus R (2007) ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant Cell Physiol 48:1319–1330

    Article  CAS  PubMed  Google Scholar 

  • Owen HA, Makaroff CA (1995) Ultrastructure of microsporogenesis and microgametogenesis in Arabidopsis thaliana (L.) Heynh, ecotype Wassilewsija (Brassicaceae). Protoplasma 185:7–21

    Article  Google Scholar 

  • Peng YB, Zou C, Wang DH, Gong HQ, Xu ZH, Bai SN (2006) Preferential localization of abscisic acid in primordial and nursing cells of reproductive organs of Arabidopsis and cucumber. New Phytol 170:459–466

    Article  CAS  PubMed  Google Scholar 

  • Preuss D, Rhee SY, Davis RW (1994) Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes. Science 264:1458–1460

    Article  CAS  PubMed  Google Scholar 

  • Rhee SY, Somerville CR (1998) Tetrad pollen formation in quartet mutants of Arabidopsis thaliana is associated with persistence of pectic polysaccharides of the pollen mother cell wall. Plant J 15:79–88

    Article  CAS  PubMed  Google Scholar 

  • Rhee SY, Osborne E, Poindexter PD, Somerville CR (2003) Microspore separation in the quartet 3 mutants of Arabidopsis is impaired by a defect in a developmentally regulated polygalacturonase required for pollen mother cell wall degradation. Plant Physiol 133:1170–1180

    Article  CAS  PubMed  Google Scholar 

  • Sorensen AM, Kröber S, Unte US, Huijser P, Dekker K, Saedler H (2003) The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J 33(2):413–423

    Article  CAS  PubMed  Google Scholar 

  • Vizcay-Barrena G, Wilson ZA (2006) Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J Exp Bot 57:2709–2717

    Article  CAS  PubMed  Google Scholar 

  • Wijeratne AJ, Zhang W, Sun YJ, Liu WL, Albert R, Zheng ZG, Oppenheimer DG, Zhao DZ, Ma H (2007) Differential gene expression in Arabidopsis wild-type and mutant anthers: insights into anther cell differentiation and regulatory networks. Plant J 52(1):14–29

    Google Scholar 

  • Xiao L, Yi B, Chen YF, Huang Z, Chen W, Ma CZ, Tu JX (2008) Molecular markers linked to Bnrf: a recessive epistatic inhibitor gene of recessive genic male sterility in Brassica napus L. Euphytica 164:377–384

    Article  CAS  Google Scholar 

  • Yang WC, Ye D, Xu J, Sundaresan V (1999) The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev 13:2108–2117

    Article  CAS  PubMed  Google Scholar 

  • Yang SL, Xie LF, Mao HZ, Puah CS, Yang WC, Jiang L, Sundaresan V, Ye D (2003) Tapetum determinant1 is required for cell specialization in the Arabidopsis anther. Plant Cell 15:2792–2804

    Article  CAS  PubMed  Google Scholar 

  • Yang CY, Vizcay-Barrena G, Conner K, Wilson ZA (2007) MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell 2007 19:3530–3548

    Article  CAS  Google Scholar 

  • Zhang SL, Fernando DD (2005) Structural, histochemical, and protein analysis of male reproductive development in willow. Sex Plant Reprod 18:37–46

    Article  Google Scholar 

  • Zhang W, Sun Y, Timofejeva L, Chen C, Grossniklaus U, Ma H (2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 133:3085–3095

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZB, Zhu J, Gao JF, Wang C, Li H, Li H, Zhang HQ, Zhang S, Wang DM, Wang QX, Huang H, Xia HJ, Yang ZN (2007) Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J 52(3):528–538

    Article  CAS  PubMed  Google Scholar 

  • Zhao DZ, Wang GF, Speal B, Ma H (2002) The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev 16:2021–2031

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financed by funds from the National Key Basic Research Special Foundation of China “973” Project (No. 2007CB1090) and the High-tech Program “863” (2006AA10Z146). We are grateful to Professor Baoming Wang at the Chinese Agricultural University for examining the ABA concentrations and to Professor Prakash in India for reviewing our manuscripts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxing Tu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Dun, X., Zhou, Z. et al. A separation defect of tapetum cells and microspore mother cells results in male sterility in Brassica napus: the role of abscisic acid in early anther development. Plant Mol Biol 72, 111–123 (2010). https://doi.org/10.1007/s11103-009-9556-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9556-0

Keywords

Navigation