Skip to main content
Log in

Identification of superior parents and hybrids for improving canola production under optimum and late sowing conditions

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Major advancement in canola breeding depends on heterotic hybrids that require high general combining ability (GCA) and specific combining ability (SCA) inbred lines. In order to estimate heritability, gene action type, GCA, SCA and heterosis and to identify superior hybrids with wider adaptation to cold, one hundred canola hybrids were produced by crossing 10 lines and 10 testers in a Line × Tester mating design. The F1 and F2 generations were sown in α-lattice design in 2012 and 2013 growing seasons under optimum (early October) and late sowing (early November) conditions to be evaluated for days to flowering, days to physiological maturity, number of pods per plant, number of seeds per pod, thousand seed weight, seed yield and leaf electrical conductivity. The combined analysis indicated sufficient genetic diversity in the population and significant difference between two sowing date. The Line × Tester analysis presented significant GCA and SCA effects for all studied traits across optimum and late sowing conditions. The main gene action type was found to be non-additive, especially incomplete dominance and over-dominance in both conditions. Narrow-sense heritability ranged from low to moderate whereas broad-sense heritability was recorded more than 60% for all of the studied traits in both generations and conditions. The average heterosis in F2 population for all studied traits was lower than that in F1 representing this fact that heterosis is generally related to the heterozygosity at the population level and poorly correlated with heterozygosity at the individual level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andarkhor SA, Mastibege N, Rameeh V (2012) Combining ability of agronomic traits in Sunflower (Helianthus annuus L.) using Line × Tester analysis. Int J Biol 4:89–95

    Google Scholar 

  • Anderson TW, Darling DA (1954) A test of goodness of fit. J Am Stat Assoc 49:765–769

    Article  Google Scholar 

  • Bajji M, Kinet J-M, Lutts S (2002) The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul 36:61–70

    Article  CAS  Google Scholar 

  • Becker H (1987) Quantitative genetik und zuchtmethodik bei raps-versuch einer literaturübersicht. Publisher of the Federal Institute for Alpine Agriculture, Gumpenstein

    Google Scholar 

  • Borjas AH, De Leon TB, Subudhi PK (2016) Genetic analysis of germinating ability and seedling vigor under cold stress in US weedy rice. Euphytica 208:251–264

    Article  Google Scholar 

  • Bus A, Körber N, Snowdon RJ, Stich B (2011) Patterns of molecular variation in a species-wide germplasm set of Brassica napus. Theor Appl Genet 123:1413–1423

    Article  PubMed  Google Scholar 

  • Chakraborty S, Newton AC (2011) Climate change, plant diseases and food security: an overview. Plant Pathol 60:2–14

    Article  Google Scholar 

  • Chapman SC, Chakraborty S, Dreccer MF, Howden SM (2012) Plant adaptation to climate change-opportunities and priorities in breeding. Crop Pasture Sci 63:251–268

    Article  Google Scholar 

  • Chen G et al (2010) Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica 175:161–174

    Article  CAS  Google Scholar 

  • Dong D-K, Cao J-S, Shi K, Liu L-C (2007) Overdominance and epistasis are important for the genetic basis of heterosis in Brassica rapa. HortScience 42:1207–1211

    Google Scholar 

  • Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O (2015) Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front Plant Sci 6:1–14

    Article  Google Scholar 

  • Gautam SC, Chauhan M (2016) Combining ability of plant height and yield components in indian mustard (Brassica juncea L. Czern & Coss.) under salt affected soil using Line × Tester analysis. J AgriSearch 3:93–100

    Article  Google Scholar 

  • Huang Z, Laosuwan P, Machikowa T, Chen Z (2010) Combining ability for seed yield and other characters in rapeseed. Suranaree J Sci Technol 17:39–47

    Google Scholar 

  • Iqbal M, Navabi A, Salmon DF, Yang R-C, Murdoch BM, Moore SS, Spaner D (2007) Genetic analysis of flowering and maturity time in high latitude spring wheat. Euphytica 154:207–218

    Article  CAS  Google Scholar 

  • Janská A, Maršík P, Zelenková S, Ovesná J (2010) Cold stress and acclimation–what is important for metabolic adjustment? Plant Biol 12:395–405

    Article  CAS  PubMed  Google Scholar 

  • Kang SA, Saeed F, Riaz M (2013) Breeding for improving the seed yield and yield contributing traits in Brassica napus L. by using line × tester analysis. J Plant Breed Genet 1:111–116

    Google Scholar 

  • Kuai J et al (2015) The yield of mechanically harvested rapeseed (Brassica napus L.) can be increased by optimum plant density and row spacing. Sci Rep 5:1–14

    Article  CAS  Google Scholar 

  • Li L, Lu K, Chen Z, Mu T, Hu Z, Li X (2008) Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics 180:1725–1742

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y et al (2012) QTL and epistatic analysis of heterosis for seed yield and three yield component traits using molecular markers in rapeseed (Brassica napus L.). Russian journal of genetics 48:1001–1008

    Article  CAS  Google Scholar 

  • McVetty P (1995) Review of performance and seed production of hybrid Brassicas. In: Proceedings of the 9th International Rapeseed Congress, Cambridge, UK, 1995. pp 98–103

  • Memon S, Baloch MJ, Baloch GM, Jatoi WA (2015) Combining ability through line × tester analysis for phenological, seed yield, and oil traits in sunflower (Helianthus annuus L.). Euphytica 204:199–209

    Article  CAS  Google Scholar 

  • Norton G, Bilsborrow P, Shipway P (1991) Comparative physiology of divergent types of winter rapeseed. In: Procedings of International Canola Conference, Saskatoon, Canada, p 180

  • Qian W, Chen X, Fu D, Zou J, Meng J (2005) Intersubgenomic heterosis in seed yield potential observed in a new type of Brassica napus introgressed with partial Brassica rapa genome. Theor Appl Genet 110:1187–1194

    Article  CAS  PubMed  Google Scholar 

  • Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179:1547–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman H (2013) Review: breeding spring canola (Brassica napus L.) by the use of exotic germplasm. Can J Plant Sci 93:363–373

    Article  CAS  Google Scholar 

  • Rahman H, Bennett RA, Yang R-C (2016) Patterns of heterosis in three distinct inbred populations of spring canola. Crop Sci 56:2536–2545

    Article  Google Scholar 

  • Rahman H, Bennett RA, Kebede B (2017) Mapping of days to flower and seed yield in spring oilseed Brassica napus carrying genome content introgressed from Brassica oleracea. Mol Breed 37:1–15

    Article  CAS  Google Scholar 

  • Raman R, Diffey S, Carling J, Cowley RB, Kilian A, Luckett DJ, Raman H (2016) Quantitative genetic analysis of grain yield in an Australian Brassica napus doubled-haploid population. Crop Pasture Sci 67:298–307

    Article  Google Scholar 

  • Rameeh V (2012) Combining ability analysis of plant height and yield components in spring type of rapeseed varieties (Brassica napus L.) using line × tester analysis. Int J Agri For 2:58–62

    Google Scholar 

  • Rameeh V (2014) Multivariate regression analyses of yield associated traits in rapeseed (Brassica napus L.) genotypes. Adv Agri 2014:1–5

    Google Scholar 

  • Rihan HZ, Al-Issawi M, Fuller MP (2017) Advances in physiological and molecular aspects of plant cold tolerance. J Plant Interact 12:143–157

    Article  CAS  Google Scholar 

  • Salehi A, Gholamhoseini M, Ataei R, Sefikon F, Ghalavand A (2018) Effects of zeolite, bio-and organic fertilizers application on german chamomile yield and essential oil composition. J Essent Oil Bear Plants 21:116–130

    Article  CAS  Google Scholar 

  • Schiessl S, Iniguez-Luy F, Qian W, Snowdon RJ (2015) Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica napus. BMC Genom 16:1–20

    Article  CAS  Google Scholar 

  • Shen J-X, Fu T-D, Yang G-S, Tu J-X, Ma C-Z (2006) Prediction of heterosis using QTLs for yield traits in rapeseed (Brassica napus L.). Euphytica 151:165–171

    Article  Google Scholar 

  • Shi J et al (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Li R, Zou J, Long Y, Meng J (2011) A dynamic and complex network regulates the heterosis of yield-correlated traits in rapeseed (Brassica napus L.). PLoS ONE 6:e21645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sincik M, Goksoy TA, Turan MZ (2011) The heterosis and combining ability of diallel crosses of rapeseed inbred lines. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39:242

    Article  Google Scholar 

  • Singh RK, Chaudhary BD (1979) Biometrical methods in quantitative genetic analysis. Kalyani, India

    Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    Article  PubMed  Google Scholar 

  • Utz H (2001) PLABSTAT: a computer program for statistical analysis of plant breeding experiments. Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany, Institute for Plant Breeding

    Google Scholar 

  • Viswanathan C, Zhu J-K (2002) Molecular genetic analysis of cold–regulated gene transcription. Philosophical Transactions of the Royal Society of London B: Biological Sciences 357:877–886

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liu G, Yang Q, Hua W, Liu J, Wang H (2010) Genetic analysis on oil content in rapeseed (Brassica napus L.). Euphytica 173:17–24

    Article  CAS  Google Scholar 

  • Wang J, Yang Y, Liu X, Huang J, Wang Q, Gu J, Lu Y (2014) Transcriptome profiling of the cold response and signaling pathways in Lilium lancifolium. BMC genomics 15:1–20

    Article  CAS  Google Scholar 

  • Wolf D, Peternelli L, Hallauer A (2000) Estimates of genetic variance in an F2 maize population. J Hered 91:384–391

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK (2010) Cold stress tolerance mechanisms in plants. A review. Agronomy for sustainable development 30:515–527

    Article  CAS  Google Scholar 

  • Yu S et al (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci 94:9226–9231

    Article  CAS  PubMed  Google Scholar 

  • Ze-su H, Paisan L, Thitiporn M, Ze-hui C, Wen-dong D, Rong T, Dezhen L (2012) Analysis on combining ability for characters of male sterile lines in rapeseed (Brassica napus L.). Journal of Northeast Agricultural University 19:28–37

    Article  Google Scholar 

  • Zheng B, Chapman SC, Christopher JT, Frederiks TM, Chenu K (2015) Frost trends and their estimated impact on yield in the Australian wheatbelt. J Exp Bot 66:3611–3623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ataei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oghan, H.A., Vahed, M.M., Ataei, R. et al. Identification of superior parents and hybrids for improving canola production under optimum and late sowing conditions. Euphytica 214, 91 (2018). https://doi.org/10.1007/s10681-018-2169-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-018-2169-4

Keywords

Navigation