Skip to main content
Log in

Comparison of methods for the estimation of best parent heterosis among lines developed from interspecific sunflower germplasm

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Pre-breeding and elite breeding are two steps in creating high yielding sunflower hybrids that differ in well established procedures and selection methods. However, a methodology that bridge efficient use of introgression lines as product of pre-breeding procedures and their crossing to elite inbreed lines, is not yet very well established. Therefore, the development of cost- and time-efficient methods for the determination of best parent heterosis and the use of best inbred lines in crosses with introgression lines for obtaining high-yielding and stable hybrids is highly desirable. In this regard, sixteen Cytoplasmic Male Sterile (CMS) inbred lines (A) derived from four heterogeneous interspecific lines originating from three annual: H. debilis silvestris (DEB-SIL), H. praecox runyoni (PRA-RUN), H. deserticola (DES) and one perennial H. resinosus (RES) wild species were evaluated. Seven agronomic traits were measured over a period of 2 years and 38 DNA loci were analysed, in order to compare four different methods for the estimation of best parent heterosis (BPH). New inbred lines were characterized by Principal Component Analysis (PCA) of morphological traits and Principal Coordinate Analysis (PCoA) of molecular marker data. Line × tester mating design was used to evaluate General Combining Ability (GCA), while Genetic Distance (GC) estimated by markers was evaluated as a predictor of BPH by Locally Weighted Sequential Smoothing (LOESS). Analysis of combining ability is one of the most important tools breeders use to identify superior inbred lines on the basis of their performance in hybrid combinations. Results obtained in this research show that PCA of morphological and PCoA of molecular marker data on parental lines are generally in agreement with GCA effects for examined traits. GD versus BPH relationships indicate that intermediate to high GD between parental lines was optimal for best heterotic effects of most traits. In this study, we show that the combination of the PCA of morphological data, PCoA of molecular marker data and GD between parental lines is fast and affordable, giving the most important information for parental choice of introgression and elite lines in sunflower breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abid MA, Malik W, Yasmeen A, Quayyum A, Zhang R, Liang C, Guo S, Ashraf J (2016) Mode of inheritance for biochemical traits in genetically engineered cotton under water stress. AOB Plants 8:1–15

    Article  Google Scholar 

  • Ambachew D, Mekbib F, Asfaw A, Beebeand SE, Blair MW (2015) Trait associations in common bean genotypes grown under drough stress and field infestation by BSM bean fly. Crop J 3:305–316

    Article  Google Scholar 

  • Atlagić J, Terzić S (2014) Sunflower genetic resources: interspecific hybridization and cytogenetics in prebreeding. In: Arribas JI (ed) Sunflowers: growth and development, environmental influences and pests/diseases. Nova Science Publishers, New York, pp 95–130. https://www.novapublishers.com/catalog/product_info.php?products_id=48246

  • Badu-Apraku B, Lum AF, Akinwale RO, Oyekunle M (2011) Biplot analysis of diallel crosses of early maturing tropical yellow maize inbreds in stress and nonstress environments. Crop Sci 51:173–188. https://doi.org/10.2135/cropsci2010.06.0366

    Article  Google Scholar 

  • Behradfar A, Gorttapeh H, Zardashty MR, Talat F (2009) Evaluation correlated traits for seed and oil yield in sunflower through path analysis in under condition relay cropping. Res J Biol Sci 4:82–85

    Google Scholar 

  • Berry ST, Allen RJ, Barnes SR, Caligari PDS (1994) Molecular marker analysis of Helianthus annuus L. 1. Restriction fragment length polymorphism between inbred lines of cultivated sunflower. Theor Appl Genet 89:435–441

    Article  PubMed  CAS  Google Scholar 

  • Blackman BK, Scascitelli M, Kane NC, Luton HH, Rasmussen DA, Bye RA, Lentz DL, Rieseberg LH (2011) Sunflower domestication alleles support single domestication center in eastern North America. PNAS 108(34):14360–14365

    Article  PubMed  Google Scholar 

  • Bonnafous F, Langdale N, Sunrise Consortium, Mangin B (2016) Inclusion of dominance effect in genomic selection model to improve predictive ability for sunflower hybrid performance. In: Proceedings of the 19th international sunflower conference, Edirne, p 285

  • Breton C, Serieys H, Berville A (2010) Gene transfer from wild Helianthus to sunflower: topicalities and limits. OCL 17(2):104–114. Article disponible sur le site http://www.ocl-journal.org. http://dx.doi.org/10.1051/ocl.2010.0296

  • Burke JM, Knapp SJ, Rieseberg LH (2005) Genetic consequences of selection during the evolution of cultivated sunflower. Genetics 171:1933–1940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheres MT, Miller JF, Crane JM, Knapp SJ (2000) Genetic distance as a predictor of heterosis and hybrid performance within and between heterotic groups in sunflower. Theor Appl Genet 100:889–894

    Article  Google Scholar 

  • Christensen R (2015) Analysis of variance, design, and regression: linear modeling for unbalanced data, 2nd edn. Chapman & Hall/CRC Press, Boca Raton

    Google Scholar 

  • Cleveland WS (1979) Robust locally weighted regression and smoothing scatter plots. Am Stat Assoc 74(368):829–836

    Article  Google Scholar 

  • Darvishzadeh R (2012) Phenotypic and molecular marker distance as a tool for prediction of heterosis and F1 performance in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Aust J Crop Sci 6(4):732–738

    CAS  Google Scholar 

  • Dias Dos Santos LA, De Toledo Picoli EA, Rocha RB, Alfenas AC (2004) A priori choice of hybrid parents in plants. Genet Mol Res 3(3):356–368

    Google Scholar 

  • Fillipi CV, Aquirre N, Rivas JG, Zubrycki J, Puebla A, Cordes D, Moreno MV, Fusari CM, Alvarez D, Heinz RA, Hopp HE, Paniego NB, Lia VV (2015) Population structure and genetic diversity characterization of a sunflower association mapping population using SSR and SNP markers. BMC Plant Biol 15(52):1–12

    Google Scholar 

  • Heffner EL, Jannink JL, Iwata H, Souza H, Sorrells ME (2011) Genomic selection accuracy for grain quality traits in biparental wheat populations. Crop Sci 51:2597–2606

    Article  Google Scholar 

  • Hladni N (2010) Genes and sunflower yield. Foundation Andrejević, Beograd, p 116

    Google Scholar 

  • Hladni N, Miklič V (2012) Old and new trends of using genetic resources in sunflower plant breeding with the aim of preserving biodiversity. In: Proceedings of the 4th Joint UNS-PSU international conference on biosci: biotechnology and biodiversity, Novi Sad, pp 109–120

  • Hongtrakul V, Huestis GM, Knapp SJ (1997) Amplified fragment length polymorphism as a tool for DNA fingerprinting sunflower germplasm: genetic diversity among oilseed inbred lines. Theor Appl Genet 95:400–407

    Article  CAS  Google Scholar 

  • Jacoby WG (2000) LOESS: a nonparametric, graphical tool for depicting relationships between variables. Elect Stud 19(4):577–613

    Article  Google Scholar 

  • Kane N, Burke J, Marek L, Seiler GJ, Vear F, Baute G, Knapp S, Vincourt P, Rieseberg LH (2013) Sunflower genetics, genomics and ecological resources. Mol Ecol Resour 13:10–20

    Article  PubMed  Google Scholar 

  • Kaya Y (2016) Chapter 4 - Sunflower, In: Gupta SK (ed) Breeding oilseed crops for sustainable production. Academic Press, San Diego, pp 55–88. https://doi.org/10.1016/B978-0-12-801309-0.00004-5

  • Krishnamurthy SL, Rao AM, Reddy KM, Ramesh S, Hittalmani S, Rao MG (2013) Limits of parental divergence for the occurrence of heterosis through morphological and AFLP marker in chilli (Capsicum annuum L.). Curr Sci 6:25

    Google Scholar 

  • Kroonenberg PM (1995) Introduction to biplots for G × E tables. Department of Mathematics, Research Report 51. University of Queensland, Australia. http://three-mode.leidenuniv.nl/document/biplot.pdf

  • Lai Z, Livingstone K, Zou Y, Church SA, Knapp SJ, Andrews J, Rieseberg LH (2005) Identification and mapping of SNPs from ESTs in sunflower. Theor Appl Genet 111:1532–1544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leclercq P (1969) Une sterilite cytoplasmique chez le tournesol. Ann Amelior Plantes 19:99–106

    Google Scholar 

  • Liu J (2002) PowerMarker: a powerful software for marker data analysis. Raleigh, North Carolina State University, Bioinformatics Research Center. http://statgen.ncsu.edu/powermarker/

  • Livaja M, Unterseer S, Erath W, Lehermeier C, Wieseke R, Plieske J et al (2016) Diversity analysis and genomic prediction of Sclerotinia resistance in sunflower using a new 25 K SNP genotyping array. Theor Appl Genet 129:317–329

    Article  PubMed  CAS  Google Scholar 

  • Mandel JR, Dechaine JM, Marek LF, Burke JM (2011) Genetic diversity and population structure in cultivated sunflower and a comparison to its wild progenitor, Helianthus annuus L. Theor Appl Genet 123:693–704. https://doi.org/10.1007/s00122-011-1619-3

    Article  PubMed  CAS  Google Scholar 

  • Mangin B, Bonnafous F, Blanchet N, Boniface M-C, Bret-Mestrie E, Carrère S et al (2017) Genomic prediction of sunflower hybrids oil content. Front Plant Sci 8:1633. https://doi.org/10.3389/fpls.2017.01633

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohayeji M, Capriotti AL, Cavaliere C, Piovesana S, Samperi R, Stampachiacchiere S, Toorchi M, Lagana A (2014) Heterosis profile of sunflower leaves: a label free proteomics approach. J Proteom 99:101–110

    Article  CAS  Google Scholar 

  • Moreno MV, Nishinakamasu V, Loray MA, Alvarez D, Gieco J, Vicario A, Hopp HE, Heinz RA, Paniego N, Lia VV (2013) Genetic characterization of sunflower breeding resources from Argentina: assessing diversity in key open-pollinated and composite populations. Plant Genet Resour Charact Util 11(3):238–249

    Article  Google Scholar 

  • Ndhlela T, Herselman L, Semagn K, Magorokosho C, Mutimaamba C, Labuschagne MT (2015) Relationships between heterosis, genetic distances and specific combining ability among CIMMYT and Zimbabwe developed maize inbred lines under stress and optimal conditions. Euphytica 204(3):635–647

    Article  CAS  Google Scholar 

  • Panković D, Radovanović N, Jocić S, Šatović Z, Škorić D (2007) Development of Co-dominant amplified polymorphic sequence markers for resistance to sunflower downy mildew race 730. Plant Breed 126(4):440–444

    Article  CAS  Google Scholar 

  • Perovic D, Förster J, Devaux P, Hariri D, Guilleroux M, Kanyuka K, Lyons R, Weyen J, Feuerhelm D, Kastirr U, Sourdille P, Röder M, Ordon F (2009) Mapping and diagnostic marker development for soil-borne cereal mosaic virus resistance in bread wheat. Mol Breed 23:641–653

    Article  CAS  Google Scholar 

  • Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1(7):215–222

    Article  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed Oct 2017

  • Reif JC, Zhao Y, Würschum T, Gowda M, Hahn V (2013) Genomic prediction of sunflower hybrid performance. Plant Breed 132(1):107–114

    Article  CAS  Google Scholar 

  • Rieseberg LH (1991) Homoploid reticulate evolution in Helianthus (Asteraceae): evidence from ribosomal genes. Am J Bot 78:1218–1237

    Article  Google Scholar 

  • Rieseberg LH, Soltis DE (1987) Phosphoglucomutase in Helianthus debilis: a polymorphism for isoenzyme number. Biochem Syst Ecol 15(5):545–548

    Article  CAS  Google Scholar 

  • Saftić-Panković D, Šatović Z, Radovanović N, Jocić S, Miklič V (2008) Positioning of CAPS markers for resistance to downy mildew on linkage maps as determined in three sunflower mapping populations. In: Proceedings of the 43rd Croatian and 3rd international symposium on agriculture, Opatija, Croatia, pp 357–361

  • Seiler GJ (1991a) Registration of six interspecific sunflower germplasm lines derived from wild perennial sunflower. Crop Sci 31:1097–1098. https://doi.org/10.2135/cropsci1991.0011183X003100040074x

    Article  Google Scholar 

  • Seiler GJ (1991b) Registration of 13 downy mildew tolerant interspecific sunflower germplasm lines derived from wild annual species. Crop Sci 31:1714–1716. https://doi.org/10.2135/cropsci1991.0011183X003100060093x

    Article  Google Scholar 

  • Seiler GJ (1991c) Registration of 15 interspecific sunflower germplasm lines derived from wild annual species. Crop Sci 31:1389–1390. https://doi.org/10.2135/cropsci1991.0011183X003100050081x

    Article  Google Scholar 

  • Seiler GJ (2007) Wild annual Helianthus anomalus and H. deserticola for improving oil content and quality in sunflower. Ind Crops Prod 25:95–100

    Article  Google Scholar 

  • Seiler GJ (2012) Utilization of wild Helianthus species in sunflower breeding. In: Škorić D et al (eds) Sunflower genetics and breeding. International monography. Serbian Academy of Science and Arts Branch, Novi Sad, p 520

    Google Scholar 

  • Seiler GJ, Qi LL, Marek LF (2017) Utilization of sunflower crop wild relatives for cultivated sunflower improvement. Crop Sci 57:1–19

    Article  Google Scholar 

  • Singh RK, Chaudhury BD (2001) Biometrical techniques in breeding and genetics. Saujanya Books, Delhi, p 350

    Google Scholar 

  • Škorić D, Seiler GJ, Zhao L, Chao-Chien J, Miller JF, Charlet LD (2012) Sunflower genetics and breeding. International monography. Serbian Academy of Science and Arts Branch, Novi Sad, p 520

    Google Scholar 

  • Smith B (2014) The domestication of Helianthus annuus L. (sunflower). Veg Hist Archaeobot 23:57–74. https://doi.org/10.1007/s00334-013-0393-3

    Article  Google Scholar 

  • Sprague GF, Tatum LA (1942) General versus specific combining ability in single crosses of corn. J Am Soc Agron 34:923–932

    Article  Google Scholar 

  • Syafii M, Cartika I, Ruswandi D (2015) Multivariate analysis of genetic diversity among some maize genotypes under maize-Albizia cropping system in Indonesia. Asian J Crop Sci 7:244–255

    Article  Google Scholar 

  • Tang S, Knapp SJ (2003) Microsatellites uncover extraordinary diversity in native American land races and wild populations of cultivated sunflower. Theor Appl Genet 106:990–1003

    Article  PubMed  CAS  Google Scholar 

  • Tang S, Yu JK, Slabaugh MB, Shintani DK, Knapp SJ (2002) Simple sequence repeat map of the sunflower genome. Theor Appl Genet 105:1124–1136

    Article  PubMed  CAS  Google Scholar 

  • Tang S, Kishore VK, Knapp SJ (2003) PCR-multiplexes for a genome-wide framework of simple sequence repeat marker loci in cultivated sunflower. Theor Appl Genet 107:6–19

    Article  PubMed  CAS  Google Scholar 

  • Teich I, Verga A, Balzarini M (2014) Assessing spatial genetic structure from molecular marker data via principal component analysis: a case study in a Prosopis sp. forest. Adv Biosci Biotechnol 5:89–99

    Article  Google Scholar 

  • Tersac M, Blanchard P, Brunel D, Vincourt P (1994) Relations between heterosis and enzymatic polymorphism in populations of cultivated sunflowers (Helianthus annuus L.). Theor Appl Genet 88:49–55

    Article  PubMed  CAS  Google Scholar 

  • Usatov AV, Klimenko AI, Azarin KV, Gorbachenko OF, Markin NV, Tikhobaeva VE, Kolosov YA, Usatova OA, Bakoev S, Makarenko M, Getmantseva L (2014) The relationship between heterosis and genetic distances based on SSR markers in Helianthus annuus. Ame J Agric Biol Sci 9(3):270–276

    Article  Google Scholar 

  • Van K, Kim DH, Shin JH, Lee SH (2011) Genomics of plant genetics resources: past, present, and future. Plant Genet Res 9(2):155–158

    Article  Google Scholar 

  • Vear F (2016) Changes in sunflower breeding over the last fifty years. OCL 23(2):D202

    Article  Google Scholar 

  • Warburton ML, Rauf S, Marek L, Hussain M, Ogunola O, de Jesus Sanchez Gonzalez J (2017) The use of crop wild relatives in maize and sunflower breeding. Crop Sci 57:1227–1240

    Article  CAS  Google Scholar 

  • Wegary D, Vivek B, Labuschagne M (2013) Association of parental genetic distance with heterosis and specific combining ability in quality protein maize. Euphytica 191(2):205–216

    Article  Google Scholar 

  • Wu K, Yang M, Liu H, Tao Y, Mei J, Zhao Y (2014) Genetic analysis and molecular characterization of Chinese sesame (Sesamum indicum L.) cultivars using insertion–deletion (InDel) and simple sequence repeat (SSR) markers. BMC Genet 15(35):1–15

    CAS  Google Scholar 

  • Yalcin K, Goksel E, Sezgin D, Veli P, Tahir G (2007) Determining the relationships between yield and yield attributes in sunflower. Turk J Agric 31:237–244

    Google Scholar 

  • Yan W (2002) Singular-value partition for biplot analysis of multi environment trial data. Agron J 94:990–996

    Article  Google Scholar 

  • Yan W, Rajčan I (2002) Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Sci 42:11–20

    Article  PubMed  Google Scholar 

  • Yao WH, Zhang YD, Kang MS, Chen HM, Liu L, Yu LJ, Fan XM (2013) Diallel analysis models: a comparison of certain genetic statistics. Crop Sci 53:1481–1490. https://doi.org/10.2135/cropsci2013.01.0027

    Article  Google Scholar 

  • Zambelli A, Leon A, Garces R (2015) Chapter 2: Mutagenesis in sunflower. In: Martínez-Force E, Dunford NT, Salas JJ (eds) Sunflower chemistry, production, processing, and utilization, pp 27–52. https://aocs.personifycloud.com/PersonifyEBusiness/Default.aspx?TabID=251&productId=2976692

  • Zimisuhara B, Valdiani A, Shaharaduddin NA, Quamaruzzaman F, Maziah M (2015) Structure and principal components analyses reveal an intervarietal fusion in Malaysian mistletoe fig (Ficus deltoidea Jack) populations. Int J Mol Sci 16:14369–14394

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was partly financed by the project 31025: Development of new varieties and production technology improvement of oil crops for different purposes, from the Ministry of Education and Science Republic of Serbia. The authors are grateful to Dr. Gerald Seiler (USDA-ARS, Fargo ND, USA) for providing interspecies populations and to Prof. Dragan Škorić (Serbian Academy of Sciences and Arts, Novi Sad Branch), and Dr. Dejan Dodig (Maize Research Institute, Zemun Polje, Serbia) for fruitful discussions during preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejana Panković.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hladni, N., Zorić, M., Terzić, S. et al. Comparison of methods for the estimation of best parent heterosis among lines developed from interspecific sunflower germplasm. Euphytica 214, 108 (2018). https://doi.org/10.1007/s10681-018-2197-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-018-2197-0

Keywords

Navigation