Skip to main content
Log in

Genetic diversity and association mapping of forage quality in diverse bermudagrass accessions

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Bermudagrass is a warm season grass widely cultivated for turf and fodder. Nonetheless, the grass has poor forage quality because animals that consume it fail to assimilate its organic matter efficiently. Thus, identification of the marker-trait association between simple sequence repeat (SSR) markers and forage-quality-related traits in diverse bermudagrass accessions would enable efficient selection of high forage quality bermudagrass cultivars. Association mapping of 8 forage-related-quality traits with 1474 markers was conducted in 60 diverse bermudagrass accessions from five geographical regions in China. Significant variations in eight phenotypic and physiological traits were observed among the 60 accessions. A total of 1474 alleles were amplified by 104 SSR primers. The average gene diversity and polymorphic information content for the study sample were 0.2097 and 0.1748 respectively. The clustering analysis suggested that geographic origin influenced genetic distances between accessions. A total of 76 markers significantly associated with traits at P < 0.01; 73 with a single trait and 3 with two traits each. Nevertheless, only 41 significant marker-trait associations (MTAs) were observed after Bonferroni test was separately conducted for each trait. Forty-one microsatellites had significant associations with 8 forage-quality-related traits. These markers provide a feasible means of genetically improving forage quality in bermudagrass after further authentication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADF:

Acid detergent fiber

ADL:

Acid detergent lignin

AFLPs:

Amplified fragment length polymorphisms

B:

Biomass

CA:

Crude ash

CF:

Crude fat

CP:

Crude protein

CTAB:

Cetyl-trimethyl-ammonium-bromide

CV:

Coefficient of variation

CWCs:

Cell-wall-associated components

DM:

Dry matter

EST:

Expressed sequence tags

FDR:

False discovery rate

GLM:

General liner model

H:

Height

LD:

Linkage disequilibrium

MAF:

Major allele frequency

MC:

Moisture content

MTAs:

Marker-trait associations

MLM:

Mixed linear model

NDF:

Neutral detergent fiber

PIC:

Polymorphic information content

QTLs:

Qualitative trait loci

SSR:

Simple sequence repeats

TDN:

Total digestible nutrients

References

  • Abdurakhmonov IY, Kohel RJ, Yu JZ, Pepper AE, Abdullaev AA, Kushanov FN, Salakhutdinov IB, Buriev ZT, Saha S, Scheffler BE, Jenkins JN, Abdukarimov A (2008) Molecular diversity and association mapping of fiber quality traits in exotic G. hirsutum L. germplasm. Genomics 92:478–487. doi:10.1016/j.ygeno.2008.07.013

    Article  CAS  PubMed  Google Scholar 

  • Abdurakhmonov IY, Saha S, Jenkins JN, Buriev ZT, Shermatov SE, Scheffler BE, Pepper AE, Yu JZ, Kohel RJ, Abdukarimov A (2009) Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm. Genetica 136:401–417. doi:10.1007/s10709-008-9337-8

    Article  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. doi:10.2307/2346101

    Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635. doi:10.1093/bioinformatics/btm308

    Article  CAS  PubMed  Google Scholar 

  • Camus-Kulandaivelu L, Veyrieras JB, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacca D, Charcosset A (2006) Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 Gene. Genetics 172:2449–2463. doi:10.1534/genetics.105.048603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casler MD, Duncan RR (2003) Turfgrass biology, genetics, and breeding. Wiley, New Jersey

    Google Scholar 

  • Chen Y, Zein I, Brenner EA, Andersen JR, Landbeck M, Ouzunova M, Lübberstedt T (2010) Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.). BMC Plant Biol 10:12. doi:10.1186/1471-2229-10-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Min D, Yasir TA, Hu Y-G (2012) Genetic diversity, population structure and linkage disequilibrium in elite Chinese winter wheat investigated with SSR markers. PLoS ONE 7:e44510. doi:10.1371/journal.pone.0044510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciofi C, Milinkovitch MC, Gibbs JP, Caccone A, Powell JR (2002) Microsatellite analysis of genetic divergence among populations of giant Galápagos tortoises. Mol Ecol 11:2265–2283. doi:10.1046/J.1365-294X.2002.01617.X

    Article  CAS  PubMed  Google Scholar 

  • Comont D, Winters A, Gomez LD, McQueen-Mason SJ, Gwynn-Jones D (2013) Latitudinal variation in ambient UV-B radiation is an important determinant of Lolium perenne forage production, quality, and digestibility. J Exp Bot 64:2193–2204. doi:10.1093/jxb/ert077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang X, Liu E, Liang Y, Liu Q, Breria CM (2016) QTL detection and elite alleles mining for stigma traits in Oryza sativa by association mapping. Front Plant Sci 7:1–14. doi:10.3389/fpls.2016.01188

    Article  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard J (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587. doi:10.1111/j.1471-8286.2007.01758.x

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064. doi:10.1111/j.1365-313X.2005.02591.x

    Article  CAS  PubMed  Google Scholar 

  • Fulgueira CL, Amigot SL, Gaggiotti M, Romero LA, Basílico JC (2007) Forage quality: techniques for testing. Fresh Prod 1:121–131

    Google Scholar 

  • Gharehshekhlou HR, Rasouli B, Ghotbi AA, Amiri B (2012) Forage quality analysis of Dactylic glomerata, Onobrychis sativa and Setaria galauca in North of Iran by different methods. Res J Appl Sci Eng Technol 4:1962–1966

    CAS  Google Scholar 

  • Giordano A, Liu Z, Panter SN, Dimech AM, Shang Y, Wijesinghe H, Fulgueras K, Ran Y, Mouradov A, Spangenberg GC (2014) Reduced lignin content and altered lignin composition in the warm season forage grass Paspalum dilatatum by down-regulation of a Cinnamoyl CoA Reductase Gene. Transgenic Res 23:503–517. doi:10.1007/s11248-014-9784-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guimarães EP, Ruane J, Scherf BD, Sonnino A, Dargie JD (2007) Marker-assisted selection: current status and future perspectives in crops, livestock, forestry and fish. Food Agric Org 127:1–494

    Google Scholar 

  • Gul S, Safdar M (2009) Proximate composition and mineral analysis of cinnamon. Pak J Nutr 8:1456–1460. doi:10.3923/pjn.2009.1456.1460

    Article  CAS  Google Scholar 

  • Hamblin MT, Mitchell SE, White GM, Gallego J, Kukatla R, Wing RA, Paterson AH, Kresovich S (2004) Comparative population genetics of the panicoid grasses: sequence polymorphism, linkage disequilibrium and selection in a diverse sample of Sorghum bicolor. Genetics 167:471–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDI: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. doi:10.1046/j.1471-8286.2002.00305.x

    Article  Google Scholar 

  • Heldman D (2003) Encyclopedia of agricultural, food, and biological engineering. Marcel Dekker, New York

    Google Scholar 

  • IBM. Corp. (2014) IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY

  • Jakobsson M, Edge MD, Rosenberg NA (2013) The relationship between FST and the frequency of the most frequent allele. Genetics 193:515–528. doi:10.1534/genetics.112.144758

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Huang L, Ren X, Chen Y, Zhou X, Xia Y, Huang J, Lei Y, Yan L, Wan L, Liao B (2014) Diversity characterization and association analysis of agronomic traits in a Chinese peanut (Arachis hypogaea L.) mini-core collection. J Integr Plant Biol 56:159–169. doi:10.1111/jipb.12132

    Article  PubMed  Google Scholar 

  • Kraakman ATW, Niks RE, Van den Berg PMMM, Stam P, Van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 446:435–446. doi:10.1534/genetics.104.026831

    Article  Google Scholar 

  • Li H, Liu L, Lou Y, Hu T, Fu J (2011) Genetic diversity of Chinese natural bermudagrass (Cynodon dactylon) germplasm using ISSR markers. Sci Hortic 127:555–561. doi:10.1016/j.scienta.2010.12.001

    Article  CAS  Google Scholar 

  • Li X, Yan W, Agrama H, Jia L, Jackson A, Moldenhauer K, Yeater K, McClung A, Wu D (2012) Unraveling the complex trait of harvest index with association mapping in rice (Oryza sativa L.). PLoS ONE 7:e29350. doi:10.1371/journal.pone.0029350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129. doi:10.1093/bioinformatics/bti282

    Article  CAS  PubMed  Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Lou Y, Hu L, Chen L, Sun X, Yang Y, Liu H, Xu Q (2015) Association analysis of simple sequence repeat (SSR) markers with agronomic traits in tall fescue (Festuca arundinacea Schreb.). PLoS ONE 10:e0133054. doi:10.1371/journal.pone.0133054

    Article  PubMed  PubMed Central  Google Scholar 

  • Maccaferri M, Sanguineti MC, Noli E, Tuberosa R (2005) Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed 15:271–289. doi:10.1007/s11032-004-7012-z

    Article  CAS  Google Scholar 

  • Mezmouk S, Dubreuil P, Bosio M, Décousset L, Charcosset A, Praud S, Mangin B (2011) Effect of population structure corrections on the results of association mapping tests in complex maize diversity panels. Theor Appl Genet 122:1149–1160. doi:10.1007/s00122-010-1519-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Mian MA, Saha MC, Hopkins AA, Wang ZY (2005) Use of tall fescue EST-SSR markers in phylogenetic analysis of cool-season forage grasses. Genome 48:637–647. doi:10.1139/g05-029

    Article  CAS  PubMed  Google Scholar 

  • Montgomery S (2008) Linkage disequilibrium-understanding the evolutionary past and mapping the medical future. Nat Rev Genet 9:477–485. doi:10.1038/nrg2361

    Google Scholar 

  • Neale DB, Sewell MM, Brown GR (2002) Molecular dissection of the quantitative inheritance of wood property traits in loblolly pine. Ann For Sci 59:595–605. doi:10.1051/forest:2002045

    Article  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292. doi:10.1086/282771

    Article  Google Scholar 

  • Newman YC, Adesogan AT, Vendramini J, Sollenberger L (2009) Defining forage quality 1–5. The Texas A & M university system. http://publications.tamu.edu/FORAGE/PUB_forage_Defining%20Forage%20Quality.pdf. Accessed 20 Sept 2016

  • Porras-Hurtado L, Ruiz Y, Santos C, Phillips C, Carracedo A, Lareu MV (2013) An overview of STRUCTURE: applications, parameter settings, and supporting software. Front Genet 4:1–13. doi:10.3389/fgene.2013.00098

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. doi:10.1016/0379-0738(94)90222-4

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MV, Radhakrishnan T, Bertioli DJ, Knapp SJ, Varshney RK (2011) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet 122:1119–1132. doi:10.1007/s00122-010-1517-0

    Article  CAS  PubMed  Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci U S A 98:11479–11484. doi:10.1073/pnas.201394398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saghai Maroof MA, Biyashev RM, Yang GP, Zhangf Q, Allard RW (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Popul Biol 91:5466–5470. doi:10.1073/pnas.91.12.5466

    CAS  Google Scholar 

  • Saha MC, Mian R, Zwonitzer JC, Chekhovskiy K, Hopkins AA (2005) An SSR- and AFLP-based genetic linkage map of tall fescue (Festuca arundinacea Schreb.). Theor Appl Gene 110:323–336. doi:10.1007/s00122-004-1843-1

    Article  CAS  Google Scholar 

  • Salvi S, Tuberosa R, Chiapparino E, Maccaferri M, Veillet S, van Beuningen L, Isaac P, Edwards K, Phillips RL (2002) Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol Biol 48:601–613. doi:10.1023/A:1014838024509

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj MG, Schubert AM, Ayers JL, Baring MR (2009) Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis. Electron J Biotechnol. doi:10.2225/vol12-issue2-fulltext-13

    Google Scholar 

  • Sinclair TR, Seligman NG (1995) Global environment change and simulated forage quality of wheat I. Nonstressed conditions. Field Crop Res 40:19–27. doi:10.1016/0378-4290(94)00091-P

    Article  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of ash in biomass laboratory analytical procedure (LAP). Nrel/Tp-510-4262226: 18

  • Sun X, Du Z, Ren J, Amombo E, Hu T, Fu J (2015) Association of SSR markers with functional traits from heat stress in diverse tall fescue accessions. BMC Plant Biol 15:1–13. doi:10.1186/s12870-015-0494-5

    Article  Google Scholar 

  • Vernesi C, Crestanello B, Pecchioli E, Tartari D, Caramelli D, Hauffe H, Bertorelle G (2003) The genetic impact of demographic decline and reintroduction in the wild boar (Sus scrofa): a microsatellite analysis. Mol Ecol 12:585–595. doi:10.1046/J.1365-294X.2003.01763.X

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Jiang N, Jia T, Leach L, Cockram J, Waugh R, Ramsay L, Thomas B, Luo Z (2012) Genome-wide association mapping of agronomic and morphologic traits in highly structured populations of barley cultivars. Theor Appl Genet 124:233–246. doi:10.1007/s00122-011-1697-2

    Article  PubMed  Google Scholar 

  • Wang Z, Liao L, Yuan X, Guo H, Guo A, Liu J (2013) Genetic diversity analysis of Cynodon dactylon (bermudagrass) accessions and cultivars from different countries based on ISSR and SSR markers. Biochem Syst Ecol 46:108–115. doi:10.1016/j.bse.2012.09.001

    Article  CAS  Google Scholar 

  • Weinkauf M (2012) BenjaminiHochberg.xlsx. Version 1.1

  • Wu Y, Taliaferro CM (2005) Bermudagrass. In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering, and crop improvement. Taylor & Francis, Florida, pp 229–275

    Google Scholar 

  • Wu YQ, Taliaferro CM, Martin DL, Goad CL, Anderson JA (2006) Genetic variability and relationships for seed yield and its components in Chinese Cynodon accessions. Field Crop Res 98:245–252. doi:10.1016/j.fcr.2006.02.003

    Article  Google Scholar 

  • Xie HL, Ji HQ, Liu ZH, Tian GW, Wang CL, Hu YM, Tang JH (2009) Genetic basis of nutritional content of stover in maize under low nitrogen conditions. Euphytica 165:485–493. doi:10.1007/s10681-008-9764-8

    Article  CAS  Google Scholar 

  • Xie J, Kong X, Chen J, Hu B, Wen P, Zhuang J, Bao J (2011) Mapping of quantitative trait loci for fiber and lignin contents from an interspecific cross Oryza sativa × Oryza rufipogon. J Zhejiang Univ Sci B 12:518–526. doi:10.1631/jzus.B1000299

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Luo H, Hu L, Sun X, Lou Y, Fu J (2014) Classification of genetic variation for cadmium tolerance in Bermudagrass [Cynodon dactylon (L.) Pers.] using physiological traits and molecular markers. Ecotoxicology 23:1030–1043. doi:10.1007/s10646-014-1247-1

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Sun X, Ren J, Fan J (2015) Genetic diversity and association mapping of cadmium tolerance in bermudagrass [Cynodon dactylon (L.) Pers.]. Plant Soil 390:307–321. doi:10.1007/s11104-015-2391-y

    Article  CAS  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160. doi:10.1016/j.copbio.2006.02.003

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208. doi:10.1038/ng1702

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Bai G, Luo N, Chen Z, Liu S, Liu J, Warnke SE, Jiang Y (2011) Association of simple sequence repeat (SSR) markers with submergence tolerance in diverse populations of perennial ryegrass. Plant Sci 180:391–398. doi:10.1016/j.plantsci.2010.10.013

    Article  CAS  PubMed  Google Scholar 

  • Zeisset I, Beebee TJ (2001) Determination of biogeographical range: an application of molecular phylogeography to the European pool frog Rana lessonae. Proc R Soc London B Biol Sci 268:933–938. doi:10.1098/rspb.2001.1600

    Article  CAS  Google Scholar 

  • Zhang P, Liu X, Tong H, Lu Y, Li J (2014) Association mapping for important agronomic traits in core collection of rice (Oryza sativa L.) with SSR markers. PLoS ONE 9:e111508. doi:10.1371/journal.pone.0111508

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This research was financially supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Number 31502009) and National Natural Science Foundation of China (Grant Number 31672482).

Author information

Authors and Affiliations

Authors

Contributions

XY and JF conceived and designed the experiment. MMG performed the research, analyzed data and wrote the manuscript. JF and XY revised the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Yan Xie or Jinmin Fu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 465 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gitau, M.M., Fan, J., Xie, Y. et al. Genetic diversity and association mapping of forage quality in diverse bermudagrass accessions. Euphytica 213, 234 (2017). https://doi.org/10.1007/s10681-017-2024-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-2024-z

Keywords

Navigation