Skip to main content
Log in

Barley yellow dwarf viruses: infection mechanisms and breeding strategies

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Barley yellow dwarf virus infection (BYDV) often results in substantial yield losses in susceptible cereal crops. Major symptoms of BYDV infection in cereals include plant dwarfing and colour changes of leaf blades along the vascular bundles, especially of leaf tips. A full understanding of physiological and molecular mechanisms contributing to resistance provides salient information for breeding BYD resistant varieties and developing strategies to address the problem. In this paper, we reviewed BYDV infection mechanisms and summarised current information on known resistance genes, molecular markers and the use of transgenic techniques in breeding of BYD resistant varieties. Cereal yellow dwarf viruses (CYDVs) are also discussed as both BYDV and CYDV belong to the family Luteoviridae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott D, Wang M, Waterhouse P (2002) A single copy of virus-derived, transgene-encoding hairpin RNA confers BYDV immunity. In: Henry M, McNab A (eds) Barley yellow dwarf disease: recent advances and future strategies. CYMMIT, Mexico City, pp 22–26

    Google Scholar 

  • Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743

    Article  CAS  PubMed  Google Scholar 

  • Ag PJDBB (1991) Ecology of the bird cherry-oat aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae) in the low rainfall wheat belt of South Australia. Dessertation, The University of Adelaide

  • Ajayi O (1986) The Effect of barley yellow dwarf virus on the amino-acid composition of spring wheat. Annu Appl Biol 108:145–149

    Article  CAS  Google Scholar 

  • Ali M, Hameed S, Tahir M (2014) Luteovirus: insights into pathogenicity. Arch Virol 159:2853–2860

    Article  CAS  PubMed  Google Scholar 

  • Ayala L, Henry M, Gonzalez-de-Leon D, Van Ginkel M, Mujeeb-Kazi A, Keller B, Khairallah M (2001) A diagnostic molecular marker allowing the study of Th. intermedium-derived resistance to BYDV in bread wheat segregating populations. Theor Appl Genet 102:942–949

    Article  CAS  Google Scholar 

  • Ayala L, Henry M, van Ginkel M, Singh R, Keller B, Khairallah M (2002) Identification of QTLs for BYDV tolerance in bread wheat. Euphytica 128:249–259

    Article  CAS  Google Scholar 

  • Ayala-Navarrete L, Larkin PJ (2011) Wheat virus diseases: breeding for resistance and tolerance. In: Bonjean A, Angus W, van Ginkel M (eds) World wheat book: a history of wheat breeding, vol 2. Lavoisier, Paris, pp 1073–1107

    Google Scholar 

  • Ayala-Navarrete L, Bariana H, Singh R, Gibson J, Mechanicos A, Larkin P (2007) Trigenomic chromosomes by recombination of Thinopyrum intermedium and Th. ponticum translocations in wheat. Theor Appl Genet 116:63–75

    Article  CAS  PubMed  Google Scholar 

  • Ayala-Navarrete LI, Mechanicos AA, Gibson JM, Singh D, Bariana HS, Fletcher J, Shorter S, Larkin PJ (2013) The Pontin series of recombinant alien translocations in bread wheat: single translocations integrating combinations of Bdv2, Lr19 and Sr25 disease-resistance genes from Thinopyrum intermedium and Th. ponticum. Theor Appl Genet 126:2467–2475

    Article  CAS  PubMed  Google Scholar 

  • Balachandran S, Xiang Y, Schobert C, Thompson GA, Lucas WJ (1997) Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata. Proc Natl Acad Sci 94:14150–14155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balaji B, Bucholtz DB, Anderson JM (2003) Barley yellow dwarf virus and cereal yellow dwarf virus quantification by real-time polymerase chain reaction in resistant and susceptible plants. Phytopathology 93:1386–1392

    Article  CAS  PubMed  Google Scholar 

  • Baltenberger D, Ohm H, Foster J (1987) Reactions of oat, barley, and wheat to infection with barley yellow dwarf virus isolates. Crop Sci 27:195–198

    Article  Google Scholar 

  • Banks P et al (1995) The use of cell culture for subchromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat. Genome 38:395–405

    Article  CAS  PubMed  Google Scholar 

  • Barker H, Harrison B (1986) Restricted distribution of potato leafroll virus antigen in resistant potato genotypes and its effect on transmission of the virus by aphids. Ann Appl Biol 109:595–604

    Article  Google Scholar 

  • Barker H, Reavy B, Kumar A, Webster K, Mayo M (1992) Restricted virus multiplication in potatoes transformed with the coat protein gene of potato leafroll luteovirus: similarities with a type of host gene-mediated resistance. Ann Appl Biol 120:55–64

    Article  Google Scholar 

  • Beoni E, Chrpova J, Jarosova J, Kundu JK (2016) Survey of barley yellow dwarf virus incidence in winter cereal crops, and assessment of wheat and barley resistance to the virus. Crop Pasture Sci 67:1054–1063

    CAS  Google Scholar 

  • Bolouri-Moghaddam MR, Le Roy K, Xiang L, Rolland F, Van den Ende W (2010) Sugar signalling and antioxidant network connections in plant cells. FEBS J 277:2022–2037

    Article  CAS  PubMed  Google Scholar 

  • Botha AM, Lacock L, van Niekerk C et al (2006) Is photosynthetic transcriptional regulation in Triticum aestivum L. cv. ‘TugelaDN’a contributing factor for tolerance to Diuraphis noxia (Homoptera: Aphididae)? Plant Cell Rep 25:41–54

    Article  CAS  PubMed  Google Scholar 

  • Brettell R, Banks P, Cauderon Y, Chen X, Cheng Z, Larkin P, Waterhouse P (1988) A single wheatgrass chromosome reduces the concentration of barley yellow dwarf virus in wheat. Anna Appl Biol 113:599–603

    Article  Google Scholar 

  • Burgyán J (2008) Role of silencing suppressor proteins. Methods Mol Biol 451:69–79

    Article  PubMed  Google Scholar 

  • Burgyán J, Havelda Z (2011) Viral suppressors of RNA silencing. Trends Plant Sci 16:265–272

    Article  PubMed  CAS  Google Scholar 

  • Burnett P, Comeau A, Qualset C (1995) Host plant tolerance or resistance for control of barley yellow dwarf. In: D’Arcy CJ, Burnett PA (eds) Barley Yellow Dwarf: 40 Years of Progress. APS Press, St. Paul, pp 321–343

    Google Scholar 

  • Canning E, Penrose M, Barker I, Coates D (1996) Improved detection of barley yellow dwarf virus in single aphids using RT-PCR. J Virol Methods 56:191–197

    Article  CAS  PubMed  Google Scholar 

  • Casas I, Pozo F, Trallero G, Echevarrıa J, Tenorio A (1999) Viral diagnosis of neurological infection by RT multiplex PCR: a search for entero- and herpesviruses in a prospective study. J Med Virol 57:145–151

    Article  CAS  PubMed  Google Scholar 

  • Chain F, Riault G, Trottet M, Jacquot E (2005) Analysis of accumulation patterns of barley yellow dwarf virus-PAV (BYDV-PAV) in two resistant wheat lines. Eur J Plant Pathol 113:343–355

    Article  CAS  Google Scholar 

  • Chapin JW, Thomas JS, Gray SM, Smith DM, Halbert SE (2001) Seasonal abundance of aphids (Homoptera: Aphididae) in wheat and their role as barley yellow dwarf virus vectors in the South Carolina coastal plain. J Econ Entomol 94:410–421

    Article  CAS  PubMed  Google Scholar 

  • Chay CA, Gunasinge UB, Dinesh-Kumar SP, Miller WA, Gray SM (1996) Aphid transmission and systemic plant infection determinants of barley yellow dwarf luteovirus-PAV are contained in the coat protein readthrough domain and 17-kDa protein, respectively. Virology 219:57–65

    Article  CAS  PubMed  Google Scholar 

  • Cheng S-L, Domier LL, D’Arcy CJ (1994) Detection of the readthrough protein of barley yellow dwarf virus. Virology 202:1003–1006

    Article  CAS  PubMed  Google Scholar 

  • Chéour F, Comeau A, Asselin A (1993) Barley yellow dwarf virus multiplication and host plant tolerance in durum wheat. J Phytopathol 139:357–366

    Article  Google Scholar 

  • Citovsky V, Knorr D, Schuster G, Zambryski P (1990) The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell 60:637–647

    Article  CAS  PubMed  Google Scholar 

  • Citovsky V, Wong ML, Shaw AL, Prasad B, Zambryski P (1992) Visualization and characterization of tobacco mosaic virus movement protein binding to single-stranded nucleic acids. Plant Cell 4:397–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark MF, Adams A (1977) Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J Gen Virol 34:475–483

    Article  CAS  PubMed  Google Scholar 

  • Clark M, Bar-Joseph M (1984) Enzyme immunosorbent assays in plant virology. Methods in Virology 7:51–85

    Article  CAS  Google Scholar 

  • Comeau A, Haber S (2002) Breeding for BYDV tolerance in wheat as a basis for a multiple stress tolerance strategy. In: Henry M, McNab A (eds) Barley yellow dwarf disease: recent advances and future strategies. CYMMIT, Mexico City, pp 82–92

    Google Scholar 

  • Cooper J, Jones A (1983) Responses of plants to viruses: proposals for the use of terms. Phytopathology 73:127–128

    Article  Google Scholar 

  • Cooper B, Clarke JD, Budworth P et al (2003) A network of rice genes associated with stress response and seed development. Proc Natl Acad Sci 100:4945–4950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’arcy C (1995) Symptomatology and host range of barley yellow dwarf. In: D’Arcy CJ, Burnett PA (eds) Barley yellow dwarf: 40 years of progress. APS Press, St Paul, pp 9–28

    Google Scholar 

  • D’Arcy CJ, Domier LL, Mayo MA (2000) Family Luteoviridae. In: Van Regenmortel MHV, Fauquest CM, Bishop DHL et al (eds) Virus taxonomy: seventh report of the international committee on the taxonomy of viruses. Academic Press, San Diego, pp 775–784

    Google Scholar 

  • Davis TS, Bosque-Perez NA, Foote NE, Magney T, Eigenbrode SD (2015) Environmentally dependent host-pathogen and vector-pathogen interactions in the Barley yellow dwarf virus pathosystem. J Appl Ecol 52:1392–1401

    Article  Google Scholar 

  • Deb M, Anderson JM (2008) Development of a multiplexed PCR detection method for barley and cereal yellow dwarf viruses, wheat spindle streak virus, Wheat streak mosaic virus and Soil-borne wheat mosaic virus. J Virol Methods 148:17–24

    Article  CAS  PubMed  Google Scholar 

  • del Blanco IA, Hegarty J, Gallagher L, Falk B, Brown-Guedira G, Pellerin E, Dubcovsky J (2014) Mapping of QTL for tolerance to cereal yellow dwarf virus in two-rowed spring barley. Crop Sci 54:1468–1475

    Article  PubMed  CAS  Google Scholar 

  • den Boon JA, Diaz A, Ahlquist P (2010) Cytoplasmic viral replication complexes. Cell Host Microbe 8:77–85

    Article  CAS  Google Scholar 

  • Deom CM, Oliver MJ, Beachy RN (1987) The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science 237:389–394

    Article  CAS  PubMed  Google Scholar 

  • Derrick PM, Barker H (1997) Short and long distance spread of potato leafroll luteovirus: effects of host genes and transgenes conferring resistance to virus accumulation in potato. J Gen Virol 78:243–251

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Montano J, Reese JC, Schapaugh WT, Campbell LR (2007) Chlorophyll loss caused by soybean aphid (Hemiptera: Aphididae) feeding on soybean. J Econ Entomol 100:1657–1662

    Article  CAS  PubMed  Google Scholar 

  • Dinesh-Kumar S, Miller WA (1993) Control of start codon choice on a plant viral RNA encoding overlapping genes. Plant Cell 5:679–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinesh-Kumar S, Brault V, Allen W (1992) Precise mapping and in vitro translation of a trifunctional subgenomic RNA of barley yellow dwarf virus. Virology 187:711–722

    Article  CAS  PubMed  Google Scholar 

  • Ding S-W (2010) RNA-based antiviral immunity. Nat Rev Immunol 10:632–644

    Article  CAS  PubMed  Google Scholar 

  • Ding S-W, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doupnik B Jr, Stuckey R, Bryant G, Pirone T (1982) Enzyme-linked immunosorbent assay for barley yellow dwarf virus using antiserum produced to virus from field-infected plants. Plant Dis 66:812–815

    Article  Google Scholar 

  • Eamens A, Wang M-B, Smith NA, Waterhouse PM (2008) RNA silencing in plants: yesterday, today, and tomorrow. Plant Physiol 147:456–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erion GG, Riedell WE (2012) Barley yellow dwarf virus effects on cereal plant growth and transpiration. Crop Sci 52:2794

    Article  Google Scholar 

  • Esau K (1957a) Anatomic effects of barley yellow dwarf virus and maleic hydrazide on certain Gramineae. Hilgardia 27:15–69

    Article  CAS  Google Scholar 

  • Esau K (1957b) Phloem degeneration in Gramineae affected by the barley yellow-dwarf virus. Am J Bot 44:245–251

    Article  Google Scholar 

  • Eweida M, Tomenius K, Oxelfelt P (1983) Reactions in maize infected with Swedish isolates of barley yellow dwarf (BYDV). J Phytopathol 108:251–261

    Article  Google Scholar 

  • Eweida M, Oxelfelt P, Tomenius K (1988) Concentration of virus and ultrastructural changes in oats at various stages of barley yellow dwarf virus infection. Ann Appl Biol 112:313–321

    Article  Google Scholar 

  • Eybishtz A, Peretz Y, Sade D, Gorovits R, Czosnek H (2010) Tomato yellow leaf curl virus infection of a resistant tomato line with a silenced sucrose transporter gene LeHT1 results in inhibition of growth, enhanced virus spread, and necrosis. Planta 231:537–548

    Article  CAS  PubMed  Google Scholar 

  • Fahim M, Ayala-Navarrete L, Millar AA, Larkin PJ (2010) Hairpin RNA derived from viral NIa gene confers immunity to wheat streak mosaic virus infection in transgenic wheat plants. Plant Biotechnol J 8:821–834

    Article  CAS  PubMed  Google Scholar 

  • Fahim M, Millar AA, Wood CC, Larkin PJ (2012) Resistance to wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat. Plant Biotechnol J 10:150–163

    Article  CAS  PubMed  Google Scholar 

  • Fan Q, Treder K, Miller WA (2012) Untranslated regions of diverse plant viral RNAs vary greatly in translation enhancement efficiency. BMC Biotechnol 12:22

    Article  CAS  PubMed  Google Scholar 

  • Filichkin SA, Lister RM, McGrath PF, Young MJ (1994) In vivo expression and mutational analysis of the barley yellow dwarf virus readthrough gene. Virology 205:290–299

    Article  CAS  PubMed  Google Scholar 

  • Ford C, Paltridge N, Rathjen J, Moritz R, Simpson R, Symons R (1998) Rapid and informative assays for Yd2, the barley yellow dwarf virus resistance gene, based on the nucleotide sequence of a closely linked gene. Mol Breed 4:23–31

    Article  CAS  Google Scholar 

  • Fouly HM, Domier LL, D’Arcy CJ (1992) A rapid chemiluminescent detection method for barley yellow dwarf virus. J Virol Methods 39:291–298

    Article  CAS  PubMed  Google Scholar 

  • Freeman TC, Lee K, Richardson PJ (1999) Analysis of gene expression in single cells. Curr Opin Biotechnol 10:579–582

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Ma Q, Liu Y, Xin Z, Zhang Z (2009) Molecular characterization of the genomic region harboring the BYDV-resistance geneBdv2 in wheat. J Appl Genet 50:89–98

    Article  CAS  PubMed  Google Scholar 

  • Genoud T, Métraux J-P (1999) Crosstalk in plant cell signaling: structure and function of the genetic network. Trends Plant Sci 4:503–507

    Article  CAS  PubMed  Google Scholar 

  • Ghoshroy S, Lartey R, Sheng J, Citovsky V (1997) Transport of proteins and nucleic acids through plasmodesmata. Annu Rev Plant Biol 48:27–50

    Article  CAS  Google Scholar 

  • Gildow F (1990) Barley yellow dwarf virus-aphid vector interactions associated with virus transmission and vector specificity. In: Burnett PA (ed) World perspectives on barley yellow dwarf virus. CYMMIT, Mexico City, pp 111–122

    Google Scholar 

  • Gill C, Chong J (1975) Development of the infection in oat leaves inoculated with barley yellow dwarf virus. Virology 66:440–453

    Article  CAS  PubMed  Google Scholar 

  • Gill C, Chong J (1976) Differences in cellular ultrastructural alterations between variants of barley yellow dwarf virus. Virology 75:33–47

    Article  CAS  PubMed  Google Scholar 

  • Gill C, Chong J (1979) Cytopathological evidence for the division of barley yellow dwarf virus isolates into two subgroups. Virology 95:59–69

    Article  CAS  PubMed  Google Scholar 

  • Goławska S, Krzyżanowski R, Łukasik I (2010) Relationship between aphid infestation and chlorophyll content in Fabaceae species. Acta Biol Cracov Ser Bot 52:76–80

    Google Scholar 

  • Gómez-Ariza J, Campo S, Rufat M, Estopà M, Messeguer J, Segundo BS, Coca M (2007) Sucrose-mediated priming of plant defense responses and broad-spectrum disease resistance by overexpression of the maize pathogenesis-related PRms protein in rice plants. Mol Plant Microbe In 20:832–842

    Article  CAS  Google Scholar 

  • Gourmet C, Hewings A, Kolb F, Smyth C (1994) Effect of imidacloprid on nonflight movement of Rhopalosiphum padi and the subsequent spread of barley yellow dwarf virus. Plant Dis 78:1098–1101

    Article  Google Scholar 

  • Gray SM, Power AG, Smith DM, Seaman AJ, Altman NS (1991) Aphid transmission of barley yellow dwarf virus: acquisition access periods and virus concentration requirements. Phytopathology 81:539–545

    Article  Google Scholar 

  • Guo J-Q, Moreau J-P, Lapierre H (1996) Variability among aphid clones of Rhopalosiphum padi L. and Sitobion avenae Fabr. (Homoptera: Aphididae) in transmission of three PAV isolates of barley yellow dwarf viruses. Can Entomol 128:209–217

    Article  Google Scholar 

  • Guo J-Q, Lapierre H, Moreau J-P (1997) Clonal variations and virus regulation by aphids in transmission of a French PAV-type isolate of barley yellow dwarf virus. Plant Dis 81:570–575

    Article  Google Scholar 

  • Guo L, Allen EM, Miller WA (2001) Base-pairing between untranslated regions facilitates translation of uncapped, nonpolyadenylated viral RNA. Mol Cell 7:1103–1109

    Article  CAS  PubMed  Google Scholar 

  • Gustafson JP, Ma X-F, Korzun V, Snape JW (2009) A consensus map of rye integrating mapping data from five mapping populations. Theor Appl Genet 118:793–800

    Article  PubMed  Google Scholar 

  • Habili N, McInnes JL, Symons RH (1987) Nonradioactive, photobiotin-labelled DNA probes for the routine diagnosis of barley yellow dwarf virus. J Virol Methods 16:225–237

    Article  CAS  PubMed  Google Scholar 

  • Halbert S, Voegtlin D (1995) Biology and taxonomy of vectors of barley yellow dwarf viruses. In: D’Arcy CJ, Burnett PA (eds) Barley yellow dwarf: 40 years of progress. APS Press, St Paul, pp 217–258

    Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  CAS  PubMed  Google Scholar 

  • Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D (1999) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Plant Sci 18:71–106

    Article  CAS  Google Scholar 

  • Haywood V, Kragler F, Lucas WJ (2002) Plasmodesmata pathways for protein and ribonucleoprotein signaling. Plant Cell 14:S303–S325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heinlein M, Epel BL, Padgett HS, Beachy RN (1995) Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science 270:1983

    Article  CAS  PubMed  Google Scholar 

  • Heng-Moss T, Ni X, Macedo T, Markwell JP, Baxendale FP, Quisenberry S, Tolmay V (2003) Comparison of chlorophyll and carotenoid concentrations among Russian wheat aphid (Homoptera: Aphididae)-infested wheat isolines. J Econ Entomol 96:475–481

    Article  CAS  PubMed  Google Scholar 

  • Henson JM, French RC (1993) The polymerase chain reaction and plant disease diagnosis. Annu Rev Phytopathol 31:81–109

    Article  CAS  PubMed  Google Scholar 

  • Heun M, Kennedy A, Anderson J, Lapitan N, Sorrells M, Tanksley S (1991) Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare). Genome 34:437–447

    Article  Google Scholar 

  • Hoffman T, Kolb F (1997) Effects of barley yellow dwarf virus on root and shoot growth of winter wheat seedlings grown in aeroponic culture. Plant Dis 81:497–500

    Article  Google Scholar 

  • Hoffman T, Kolb F (1998) Effects of barley yellow dwarf virus on yield and yield components of drilled winter wheat. Plant Dis 82:620–624

    Article  Google Scholar 

  • Hohmann U, Busch W, Badaeva K, Friebe B, Gill BS (1996) Molecular cytogenetic analysis of Agropyron chromatin specifying resistance to barley yellow dwarf virus in wheat. Genome 39:336–347

    Article  CAS  PubMed  Google Scholar 

  • Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312

    Article  CAS  PubMed  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • Huth W (1999) Tissue-print immunoassay: a rapid and reliable method for routinely detecting gramineae viruses. Plant Res Dev 49:7–19

    Google Scholar 

  • International Committee on Taxonomy of Viruses (ICTV) (2016) Virus taxonomy: 2016 release. https://talk.ictvonline.org/taxonomy/. Accessed 17 March 2017

  • Irwin M, Thresh J (1990) Epidemiology of barley yellow dwarf: a study in ecological complexity. Annu Rev Phytopathol 28:393–424

    Article  Google Scholar 

  • Jahier J, Chain F, Barloy D, Tanguy AM, Lemoine J, Riault G, Margale E, Trottet M, Jacquot E (2009) Effect of combining two genes for partial resistance to barley yellow dwarf virus-PAV (BYDV-PAV) derived from Thinopyrum intermedium in wheat. Plant Pathol 58:807–814

    Article  Google Scholar 

  • Jarošová J, Chrpová J, Šíp V, Kundu J (2013) A comparative study of the barley yellow dwarf virus species PAV and PAS: distribution, accumulation and host resistance. Plant Pathol 62:436–443

    Article  CAS  Google Scholar 

  • Jarošová J, Beoni E, Kundu JK (2016) Barley yellow dwarf virus resistance in cereals: approaches, strategies and prospects. Field Crops Res 198:200–214

    Article  Google Scholar 

  • Jensen S (1968) Photosynthesis respiration and other physiological relationships in barley infected with barley yellow dwarf virus. Phytopathology 58:204

    Google Scholar 

  • Jensen SG (1969) Occurrence of virus particles in the phloem tissue of BYDV-infected barley. Virology 38:83–91

    Article  CAS  PubMed  Google Scholar 

  • Jensen SG (1972) Metabolism and carbohydrate composition in barley yellow dwarf virus-infected wheat. Phytopathology 62:587–592

    Article  CAS  Google Scholar 

  • Jensen SG, D’Arcy CJ (1995) Effects of barley yellow dwarf on hosts plants. In: D’Arcy CJ, Burnett PA (eds) Barley yellow dwarf: 40 years of progress. Phytopathology, St Paul, pp 55–74

    Google Scholar 

  • Jensen SG, Van Sambeek JW (1972) Differential effects of barley yellow dwarf virus on the physiology of tissues of hard red spring wheat. Phytopathology 62:290–293

    Article  Google Scholar 

  • Jensen S, Fitzgerald P, Thysell J (1971) Physiology and field performance of wheat infected with barley yellow dwarf virus. Crop Sci 11:775–780

    Article  Google Scholar 

  • Jimenez-Martinez E, Bosque-Perez N (2004) Variation in barley yellow dwarf virus transmission efficiency by Rhopalosiphum padi (Homoptera: Aphididae) after acquisition from transgenic and nontransformed wheat genotypes. J Econ Entomol 97:1790–1796

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Martinez E, Bosque-Perez N, Berger P, Zemetra R, Ding H, Eigenbrode S (2004) Volatile cues influence the response of Rhopalosiphum padi (homoptera: Aphididae) to barley yellow dwarf virus-infected transgenic and untransformed wheat. Environ Entomol 33:1207–1216

    Article  CAS  Google Scholar 

  • Jin H, Domier LL, Kolb FL, Brown CM (1998) Identification of quantitative loci for tolerance to barley yellow dwarf virus in oat. Phytopathology 88:410–415

    Article  CAS  PubMed  Google Scholar 

  • Jin Z, Wang X, Chang S, Zhou G (2004) The complete nucleotide sequence and its organization of the genome of barley yellow dwarf virus-GAV. Sci China C Life Sci 47:175–182

    Article  CAS  PubMed  Google Scholar 

  • Kausar S, Hameed S, Saleem K, ul Haque I, Zamurrad M, Ashfaq M (2015) Molecular confirmation of Bdv2 gene in wheat germplasm and its field based assessment for resistance against barely yellow dwarf viruses. Adv Life Sci 3:16–22

    Google Scholar 

  • Kiselyova O, Yaminsky I, Karger E, Frolova OY, Dorokhov YL, Atabekov J (2001) Visualization by atomic force microscopy of tobacco mosaic virus movement protein–RNA complexes formed in vitro. J Gen Virol 82:1503–1508

    Article  CAS  PubMed  Google Scholar 

  • Koev G, Mohan B, Dinesh-Kumar S, Torbert K, Somers D, Miller W (1998) Extreme reduction of disease in oats transformed with the 5’ half of the barley yellow dwarf virus-PAV genome. Phytopathology 88:1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Kofalvi S, Nassuth A (1995) Influence of wheat streak mosaic virus infection on phenylpropanoid metabolism and the accumulation of phenolics and lignin in wheat. Physiol Mol Plant Pathol 47:365–377

    Article  CAS  Google Scholar 

  • Kolb F, Cooper N, Hewings A, Bauske E, Teyker R (1991) Effects of barley yellow dwarf virus on root growth in spring oat. Plant Dis 75:143–145

    Article  Google Scholar 

  • Kong L, Anderson J, Ohm H (2009) Segregation distortion in common wheat of a segment of Thinopyrum intermedium chromosome 7E carrying Bdv3 and development of a Bdv3 marker. Plant Breed 128:591–597

    Article  CAS  Google Scholar 

  • Kosova K, Chrpova J, Sip V (2008) Recent advances in breeding of cereals for resistance to barley yellow dwarf virus-A review. Czech J Genet Plant Breed 44:1–10

    Google Scholar 

  • Lacroix C, Seabloom EW, Borer ET (2014) Environmental nutrient supply alters prevalence and weakens competitive interactions among coinfecting viruses. New Phytol 204:424–433

    Article  CAS  PubMed  Google Scholar 

  • Lapierre H, Signoret P-A (2004) Viruses and virus diseases of Poaceae (Gramineae). INRA, Paris

    Google Scholar 

  • Larkin PJ, Banks PM, Lagudah ES, Apples R, Xiao C, Zhiyong XOhm HW, Mclntosh RA (1995) Disomic Thinopyrum intermedium addition lines in wheat with barley yellow dwarf virus resistance and with rust resistances. Genome 38:385–394

    Article  CAS  PubMed  Google Scholar 

  • Lee L, Palukaitis P, Gray SM (2002) Host-dependent requirement for the potato leafroll virus 17-kda protein in virus movement. Mol Plant Microbe Interact 15:1086–1094

    Article  CAS  PubMed  Google Scholar 

  • Lin N, Hsu Y, Hsu H (1990) Immunological detection of plant viruses and a mycoplasmalike organism by direct tissue blotting on nitrocellulose membranes. Phytopathology 80:824–828

    Article  CAS  Google Scholar 

  • Lin Z, Huang D, Du L, Ye X, Xin Z (2006) Identification of wheat–Thinopyrum intermedium 2Ai-2 ditelosomic addition and substitution lines with resistance to barley yellow dwarf virus. Plant Breed 125:114–119

    Article  CAS  Google Scholar 

  • Lister RM, Ranieri R (1995) Distribution and economic importance of barley yellow dwarf. In: D’Arcy CJ, Burnett PA (eds) Barley yellow dwarf: 40 years of progress. APS Press, St Paul, pp 29–53

    Google Scholar 

  • Lister R, Rochow W (1979) Detection of barley yellow dwarf virus by enzyme-linked immunosorbent assay. Phytopathology 69:649–654

    Article  CAS  Google Scholar 

  • Liu K, Xia Z, Zhang Y, Wen Y, Wang D, Brandenburg K, Harris F, Phoenix DA (2005) Interaction between the movement protein of barley yellow dwarf virus and the cell nuclear envelope: role of a putative amphiphilic α-helix at the N-terminus of the movement protein. Biopolymers 79:86–96

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Bonning BC, Miller WA (2006) A simple wax-embedding method for isolation of aphid hemolymph for detection of luteoviruses in the hemocoel. J Virol Methods 132:174–180

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Wang X, Liu Y, Xie J, Gray S, Zhou G, Gao B (2007) A Chinese isolate of barley yellow dwarf virus-PAV represents a third distinct species within the PAV serotype. Arch Virol 152:1365–1373

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhai H, Zhao K, Wu B, Wang X (2012) Two suppressors of RNA silencing encoded by cereal-infecting members of the family Luteoviridae. J Gen Virol 93:1825–1830

    Article  CAS  PubMed  Google Scholar 

  • Livingston D, Gildow F (1991) Barley yellow dwarf virus infection on fuctan and sugar concentration in winter oat crown. Crop Sci 31:1081–1082

    Article  CAS  Google Scholar 

  • Lowles AJ, Tatcheel GM, Harrington R, Clark SJ (1996) The effect of temperature and inoculation access period on the transmission of barley yellow dwarf virus by Rhopalosiphum padi (L.) and Sitobion avenae (F.). Ann Appl Biol 128:45–53

    Article  Google Scholar 

  • Mackay IM, Arden KE, Nitsche A (2002) Real-time PCR in virology. Nucleic Acids Res 30:1292–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacKenzie DJ, McLean MA, Mukerji S, Green M (1997) Improved RNA extraction from woody plants for the detection of viral pathogens by reverse transcription-polymerase chain reaction. Plant Dis 81:222–226

    Article  CAS  Google Scholar 

  • Makkouk K, Comeau A (1994) Evaluation of various methods for the detection of barley yellow dwarf virus by the tissue-blot immunoassay and its use for virus detection in cereals inoculated at different growth stages. Eur J Plant Pathol 100:71–80

    Article  Google Scholar 

  • Makkouk K, Comeau A, St-Pierre C (1994) Screening for barley yellow dwarf luteovirus resistance in barley on the basis of virus movement. J Phytopath 141:165–172

    Article  Google Scholar 

  • Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5:359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrath P, Vincent J, Lei C-H et al (1997) Coat protein-mediated resistance to isolates of barley yellow dwarf in oats and barley. Eur J Plant Pathol 103:695–710

    Article  CAS  Google Scholar 

  • McKirdy S, Jones R, Nutter F Jr (2002) Quantification of yield losses caused by barley yellow dwarf virus in wheat and oats. Plant Dis 86:769–773

    Article  Google Scholar 

  • McLean BG, Zupan J, Zambryski PC (1995) Tobacco mosaic virus movement protein associates with the cytoskeleton in tobacco cells. Plant Cell 7:2101–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meshi T, Watanabe Y, Saito T, Sugimoto A, Maeda T, Okada Y (1987) Function of the 30 kd protein of tobacco mosaic virus: involvement in cell-to-cell movement and dispensability for replication. EMBO J 6:2557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller W, Waterhouse PM, Kortt AA, Gerlach W (1988a) Sequence and identification of the barley yellow dwarf virus coat protein gene. Virology 165:306–309

    Article  CAS  PubMed  Google Scholar 

  • Miller WA, Waterhouse P, Gerlach W (1988b) Sequence and organization of barley yellow dwarf virus genomic RNA. Nucleic Acids Res 16:6097–6111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, Allen W, Rasochová L (1997a) Barley yellow dwarf viruses. Annu Rev Phytopathol 35:167–190

    Article  CAS  PubMed  Google Scholar 

  • Miller WA, Koev G, Mohan B (1997b) Are there risks associated with transgenic resistance to luteoviruses? Plant Dis 81:700–710

    Article  Google Scholar 

  • Miller W, Beckett R, Liu S (2002a) Structure, function and variation of the barley yellow dwarf virus and cereal yellow dwarf virus genomes. In: Henry M, McNab A (eds) Barley yellow dwarf disease: recent advances and future strategies. CYMMIT, Mexico City, pp 1–8

    Google Scholar 

  • Miller WA, Liu S, Beckett R (2002b) Barley yellow dwarf virus: Luteoviridae or Tombusviridae? Mol Plant Pathol 3:177–183

    Article  CAS  PubMed  Google Scholar 

  • Miller TE, Burns JH, Munguia P et al (2005) A critical review of twenty years’ use of the resource-ratio theory. Am Nat 165:439–448

    PubMed  Google Scholar 

  • Mohan B, Dinesh-Kumar S, Miller WA (1995) Genes and cis-acting sequences involved in replication of barley yellow dwarf virus-PAV RNA. Virology 212:186–195

    Article  CAS  PubMed  Google Scholar 

  • Morkunas I, Marczak Ł, Stachowiak J, Stobiecki M (2005) Sucrose-stimulated accumulation of isoflavonoids as a defense response of lupine to Fusarium oxysporum. Plant Physiol Biochem 43:363–373

    Article  CAS  PubMed  Google Scholar 

  • Nass PH, Jakstys BP, D’Arcy CJ (1995) In situ localization of barley yellow dwarf virus coat protein in oats. Phytopathology 85:556–560

    Article  Google Scholar 

  • Nass PH, Domier LL, Jakstys BP, D’Arcy CJ (1998) In situ localization of barley yellow dwarf virus-PAV 17-kDa protein and nucleic acids in oats. Phytopathology 88:1031–1039

    Article  CAS  PubMed  Google Scholar 

  • Nassuth A, Pollari E, Helmeczy K, Stewart S, Kofalvi SA (2000) Improved RNA extraction and one-tube RT-PCR assay for simultaneous detection of control plant RNA plus several viruses in plant extracts. J Virol Methods 90:37–49

    Article  CAS  PubMed  Google Scholar 

  • Ng JC, Perry KL (2004) Transmission of plant viruses by aphid vectors. Mol Plant Pathol 5:505–511

    Article  PubMed  Google Scholar 

  • Ngadze E, Icishahayo D, Coutinho TA, van der Waals JE (2012) Role of polyphenol oxidase, peroxidase, phenylalanine ammonia lyase, chlorogenic acid, and total soluble phenols in resistance of potatoes to soft rot. Plant Dis 96:186–192

    Article  CAS  Google Scholar 

  • Ni X, Quisenberry S, Heng-Moss T, Markwell J, Sarath G, Klucas R, Baxendale F (2001) Oxidative responses of resistant and susceptible cereal leaves to symptomatic and nonsymptomatic cereal Aphid (Hemiptera: Aphididae) feeding. J Econ Entomol 94:743–751

    Article  CAS  PubMed  Google Scholar 

  • Niks R, Habekuss A, Bekele B, Ordon F (2004) A novel major gene on chromosome 6H for resistance of barley against the barley yellow dwarf virus. Theor Appl Genet 109:1536–1543

    Article  CAS  PubMed  Google Scholar 

  • Noueiry AO, Lucas WJ, Gilbertson RL (1994) Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell 76:925–932

    Article  CAS  PubMed  Google Scholar 

  • Novoa RR, Calderita G, Arranz R, Fontana J, Granzow H, Risco C (2005) Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol Cell 97:147–172

    Article  CAS  PubMed  Google Scholar 

  • Ordon F et al (2004) Molecular markers in breeding for virus resistance in barley. J Appl Genet 45:145–160

    PubMed  Google Scholar 

  • Ordon F, Habekuss A, Kastirr U, Rabenstein F, Kühne T (2009) Virus resistance in cereals: sources of resistance, genetics and breeding. J Phytopathol 157:535–545

    Article  Google Scholar 

  • Oswald JW, Houston B (1953) The yellow-dwarf virus disease of cereal crops. Phytopathology 43:128–136

    Google Scholar 

  • Paltridge N, Collins N, Bendahmane A, Symons R (1998) Development of YLM, a codominant PCR marker closely linked to the Yd2 gene for resistance to barley yellow dwarf disease. Theor Appl Genet 96:1170–1177

    Article  CAS  Google Scholar 

  • Paran I, Michelmore R (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993

    Article  CAS  PubMed  Google Scholar 

  • Parizoto G, Rebonatto A, Schons J, Lau D (2013) Barley yellow dwarf virus-PAV in Brazil: seasonal fluctuation and biological characteristics. Trop Plant Pathol 38:11–19

    Article  Google Scholar 

  • Parry HR, Macfadyen S, Kriticos DJ (2012) The geographical distribution of Yellow dwarf viruses and their aphid vectors in Australian grasslands and wheat. Australas Plant Pathol 41:375–387

    Article  Google Scholar 

  • Pascal E, Sanderfoot AA, Ward BM, Medville R, Turgeon R, Lazarowitz SG (1994) The geminivirus BR1 movement protein binds single-stranded DNA and localizes to the cell nucleus. Plant Cell 6:995–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul CP, Barry JK, Dinesh-Kumar S, Brault V, Miller WA (2001) A sequence required for − 1 ribosomal frameshifting located four kilobases downstream of the frameshift site. J Mol Biol 310:987–999

    Article  CAS  PubMed  Google Scholar 

  • Perry KL, Kolb FL, Sammons B, Lawson C, Cisar G, Ohm H (2000) Yield effects of barley yellow dwarf virus in soft red winter wheat. Phytopathol 90:1043–1048

    Article  CAS  Google Scholar 

  • Power AG (2010) Ecosystem services and agriculture: tradeoffs and synergies. Philos Trans R Soc B: Biol Sci 365:2959–2971

    Article  Google Scholar 

  • Qi L et al (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ra Massala, Legrand M, Fritig B (1980) Effect of α-aminooxyacetate, a competitive inhibitor of phenylalanine ammonia-lyase, on the hypersensitive resistance of tobacco to tobacco mosaic virus. Physiol Plant Pathol 16:213–226

    Article  Google Scholar 

  • Riedel C, Habekuß A, Schliephake E, Niks R, Broer I, Ordon F (2011) Pyramiding of Ryd2 and Ryd3 conferring tolerance to a German isolate of Barley yellow dwarf virus-PAV (BYDV-PAV-ASL-1) leads to quantitative resistance against this isolate. Theor Appl Genet 123:69–76

    Article  CAS  PubMed  Google Scholar 

  • Riedell WE, Kieckhefer RW, Langham MA, Hesler LS (2003) Root and shoot responses to bird cherry-oat aphids and in spring wheat. Crop Sci 43:1380–1386

    Article  Google Scholar 

  • Rochow W (1969) Biological properties of four isolates of barley yellow dwarf virus. Phytopathol 59:1580–1589

    CAS  Google Scholar 

  • Rochow W, Carmichael L (1979) Specificity among barley yellow dwarf viruses in enzyme immunosorbent assays. Virology 95:415–420

    Article  CAS  PubMed  Google Scholar 

  • Rochow W, Muller I (1971) A fifth variant of barley yellow dwarf virus in New York. Plant Dis Rep 55:874–877

    Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Sahhafi S, Assad M, Masumi M, Razi H, Alemzadeh A (2011) Influence of WSMV infection on biochemical changes in two bread wheat cultivars and in their F2 populations. J Agric Sci Technol 14:399–405

    Google Scholar 

  • Schaller C, Qualset C, Rutger J (1964) Inheritance and linkage of the Yd2 gene conditioning resistance to the barley yellow dwarf virus disease in barley. Crop Sci 4:544–548

    Article  Google Scholar 

  • Schmitz J, Stussi-Garaud C, Tacke E, Prüfer D, Rohde W, Rohfritsch O (1997) In situ localization of the putative movement protein (pr17) from potato leafroll luteovirus (PLRV) in infected and transgenic potato plants. Virology 235:311–322

    Article  CAS  PubMed  Google Scholar 

  • Scoles G, Ayala-Navarrete L, Tourton E, Mechanicos A, Larkin P (2009) Comparison of Thinopyrum intermedium derivatives carrying barley yellow dwarf virus resistance in wheat. Genome 52:537–546

    Article  CAS  Google Scholar 

  • Selman I, Brierley G, Pegg G, Hill T (1961) Changes in the free amino acids and amides in tomato plants inoculated with tomato spotted wilt virus. Anna Appl Biol 49:601–615

    Article  CAS  Google Scholar 

  • Shalitin D, Wolf S (2000) Cucumber mosaic virus infection affects sugar transport in melon plants. Plant Physiol 123:597–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma H, Ohm H, Goulart L, Lister R, Appels R, Benlhabib O (1995) Introgression and characterization of barley yellow dwarf virus resistance from Thinopyrum intermedium into wheat. Genome 38:406–413

    Article  Google Scholar 

  • Shi Z, Chen X, Line R, Leung H, Wellings C (2001) Development of resistance gene analog polymorphism markers for the Yr9 gene resistance to wheat stripe rust. Genome 44:509–516

    Article  CAS  PubMed  Google Scholar 

  • Siddique Z, Akhtar KP, Hameed A, Sarwar N, Imran-Ul-Haq KSA (2014) Biochemical alterations in leaves of resistant and susceptible cotton genotypes infected systemically by cotton leaf curl burewala virus. J Plant Interact 9:702–711

    Article  CAS  Google Scholar 

  • Singh RP, Burnett PA, Albarran M, Rajaram S (1993) Bdv1: a gene for tolerance to barley yellow dwarf virus in bread wheats. Crop Sci 33:231–234

    Article  Google Scholar 

  • Šíp V, Širlová L, Chrpova J (2006) Screening for barley yellow dwarf virus-Resistant barley genotypes by assessment of virus content in inoculated seedlings. J Phytopathol 154:336–342

    Article  Google Scholar 

  • Smith NA, Singh SP, M-b Wang, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Gene expression [colon] Total silencing by intron-spliced hairpin Rnas. Nature 407:319–320

    Article  CAS  PubMed  Google Scholar 

  • Stoate C, Boatman N, Borralho R, Carvalho CR, De Snoo G, Eden P (2001) Ecological impacts of arable intensification in Europe. J Environ Manag 63:337–365

    Article  CAS  Google Scholar 

  • Stoutjesdijk P, Kammholz S, Kleven S, Matsay S, Banks P, Larkin P (2001) PCR-based molecular marker for the Bdv2 Thinopyrum intermedium source of barley yellow dwarf virus resistance in wheat. Crop Pasture Sci 52:1383–1388

    Article  CAS  Google Scholar 

  • Suneson CA (1955) Breeding for resistance to yellow dwarf virus in barley. Agron J 47:283

    Article  Google Scholar 

  • Tacke E, Prüfer D, Schmitz J, Rohde W (1991) The potato leafroll luteovirus 17K protein is a single-stranded nucleic acid-binding protein. J Gen Virol 72:2035–2038

    Article  CAS  PubMed  Google Scholar 

  • Tacke E, Schmitz J, Prüfer D, Rohde W (1993) Mutational analysis of the nucleic acid-binding 17 kDa phosphoprotein of potato leafroll luteovirus identifies an amphipathic α-helix as the domain for protein/protein interactions. Virology 197:274–282

    Article  CAS  PubMed  Google Scholar 

  • Tar’an B, Zhang C, Warkentin T, Tullu A, Vandenberg A (2005) Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on molecular markers, and morphological and physiological characters. Genome 48:257–272

    Article  PubMed  Google Scholar 

  • Telang A, Sandström J, Dyreson E, Moran NA (1999) Feeding damage by Diuraphis noxia results in a nutritionally enhanced phloem diet. Entomol Exp et Appl 91:403–412

    Article  Google Scholar 

  • Toojinda T et al (2000) Mapping quantitative and qualitative disease resistance genes in a doubled haploid population of barley (Hordeum vulgare). Theor Appl Genet 101:580–589

    Article  CAS  Google Scholar 

  • van Bel AJ (2003) The phloem, a miracle of ingenuity. Plant Cell Environ 26:125–149

    Article  Google Scholar 

  • Van Regenmortel M, Mayo M, Fauquet C, Maniloff J (2000) Virus nomenclature: consensus versus chaos. Arch Virol 145:2227–2232

    Article  PubMed  Google Scholar 

  • Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci 96:14147–14152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voller A, Bartlett A, Bidwell D, Clark M, Adams A (1976) The detection of viruses by enzyme-linked immunosorbent assay (ELISA). J Gen Virol 33:165–167

    Article  CAS  PubMed  Google Scholar 

  • Waigmann E, Lucas WJ, Citovsky V, Zambryski P (1994) Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc Natl Acad Sci 91:1433–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waigmann E, Ueki S, Trutnyeva K, Citovsky V (2004) The ins and outs of nondestructive cell-to-cell and systemic movement of plant viruses. Crit Rev Plant Sci 23:195–250

    Article  CAS  Google Scholar 

  • Wang JY, Chay C, Gildow FE, Gray SM (1995) Read through protein associated with virions of barley yellow Dwarf luteovirus and its potential role in regulating the efficiency of aphid transmission. Virology 206:954–962

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Browning KS, Miller WA (1997) A viral sequence in the 3′-untranslated region mimics a 5′ cap in facilitating translation of uncapped mRNA. EMBO J 16:4107–4116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Abbott D, Waterhouse P (2000) A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol Plant Pathol 1:347–356

    Article  CAS  PubMed  Google Scholar 

  • Wang MJ, Zhang Y, Lin ZS, Ye XG, Yuan YP, Ma W, Xin ZY (2010) Development of EST-PCR markers for Thinopyrum intermedium chromosome 2Ai#2 and their application in characterization of novel wheat-grass recombinants. Theor Appl Genet 121:1369–1380

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse PM, Wang M-B, Lough T (2001) Gene silencing as an adaptive defence against viruses. Nature 411:834–842

    Article  CAS  PubMed  Google Scholar 

  • Wen F, Lister R, Fattouh F (1991) Cross-protection among strains of barley yellow dwarf virus. J Gen Virol 72:791–799

    Article  PubMed  Google Scholar 

  • Wernersson R, Pedersen AG (2003) RevTrans: multiple alignment of coding DNA from aligned amino acid sequences. Nucleic Acids Res 31:3537–3539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson T (1993) Strategies to protect crop plants against viruses: pathogen-derived resistance blossoms. Proc Natl Acad Sci 90:3134–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf S, Deom CM, Beachy RN, Lucas WJ (1989) Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246:377–379

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Blanchard-Letort A, Liu Y, Zhou G, Wang X, Elena SF (2011) Dynamics of molecular evolution and phylogeography of Barley yellow dwarf virus-PAV. PLoS ONE 6:e16896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Z, Wang Y, Du Z, Li J, Zhao RY, Wang D (2008) A potential nuclear envelope-targeting domain and an arginine-rich RNA binding element identified in the putative movement protein of the GAV strain of Barley yellow dwarf virus. Funct Plant Biol 35:40

    Article  CAS  Google Scholar 

  • Xia Z, Cao R, Sun K, Zhang H (2012) The movement protein of barley yellow dwarf virus-GAV self-interacts and forms homodimers in vitro and in vivo. Arch Virol 157:1233–1239

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Hou Q, Zhao Y, Ni Z, Liang H, Liang R (2016) Biochemical responses of resistant and susceptible wheat cultivars to English grain aphid (Sitobio avenae F.) at grain-filling stage. Acad J Biotechnol 4:276–284

    Google Scholar 

  • Yan G, Chen X, Line R, Wellings C (2003) Resistance gene-analog polymorphism markers co-segregating with the Yr5 gene for resistance to wheat stripe rust. Theor Appl Genet 106:636–643

    Article  CAS  PubMed  Google Scholar 

  • Yan F, Zhang W, Xiao H, Li S, Cheng Z (2007) Transgenic wheat expressing virus-derived hairpin RNA is resistant to Barley yellow dwarf virus. Hereditas 29:97–102

    Article  CAS  PubMed  Google Scholar 

  • Yan S-L, Lehrer A, Hajirezaei M, Springer A, Komor E (2008) Modulation of carbohydrate metabolism and chloroplast structure in sugarcane leaves which were infected by Sugarcane Yellow Leaf Virus (SCYLV). Physiol Mol Plant Pathol 73:78–87

    Article  CAS  Google Scholar 

  • Yao K, De Luca V, Brisson N (1995) Creation of a metabolic sink for tryptophan alters the phenylpropanoid pathway and the susceptibility of potato to Phytophthora infestans. Plant Cell 7:1787–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yassaie M, Afsharifar A, Niazi A, Salehzadeh S, Izadpanah K (2011) Induction of resistance to barley yellow dwarf virus (PAV) in bread wheat using post-transcriptional gene silencing (PTGS). Iran J Plant Pathol 47:15–18

    Google Scholar 

  • Yoo S, Cho S, Sugimoto H, Li J, Kusumi K, Koh H, Iba K, Paek N (2009) Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol 150:388–401

    Article  CAS  Google Scholar 

  • Young M, Kelly L, Larkin P, Waterhouse PM, Gerlach W (1991) Infectious in vitro transcripts from a cloned cDNA of barley yellow dwarf virus. Virology 180:372–379

    Article  CAS  PubMed  Google Scholar 

  • Zagula K, Barbara D, Fulbright D, Lister R (1990) Evaluation of three ELISA methods as alternatives to ISEM for detection of the wheat spindle streak mosaic strain of wheat yellow mosaic virus. Plant Dis 74:974–978

    Article  Google Scholar 

  • Zhang S, Klessig DF (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 6:520–527

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Xin Z, Lin Z, Chen X, Wang X (1999) Identification of molecular markers for the Thinopyrum intermedium chromosome 2Ai-2 with resistance to barley yellow dwarf virus. Acta Bot Sin 42:1051–1056

    Google Scholar 

  • Zhang Z, Wang L, Xin Z, Lin Z (2002) Development of new PCR markers specific to a Thinopyrum intermedium chromosome 2Ai-2 and cloning of the St-specific sequences. Acta Genetica Sin 29:627–633

    CAS  Google Scholar 

  • Zhang Z, Xu J, Xu Q, Larkin P, Xin Z (2004) Development of novel PCR markers linked to the BYDV resistance gene Bdv2 useful in wheat for marker-assisted selection. Theor Appl Genet 109:433–439

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Zhang S, Qian Y (1987) Identification and applications of four strains of wheat yellow dwarf virus. Sci Agric Sin 20:7–12

    Google Scholar 

Download references

Acknowledgements

This project is supported by the Grains Research and Development Corporation of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meixue Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhury, S., Hu, H., Meinke, H. et al. Barley yellow dwarf viruses: infection mechanisms and breeding strategies. Euphytica 213, 168 (2017). https://doi.org/10.1007/s10681-017-1955-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-1955-8

Keywords

Navigation