Skip to main content

Advertisement

Log in

Mapping quantitative trait loci for tolerance to phosphorus-deficiency at the seedling stage in barley

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Phosphorus (P) deficiency in soil is a major factor that limits barley yield production. Increasing the tolerance to P-deficiency of barley is one of the most cost-effective solutions. Quantitative trait loci (QTLs) controlling P acquisition, P utilization efficiency and biomass at the seedling stage were identified using a population of recombinant inbred lines (RILs) subjected to two P concentrations (low P (LP), 25 µM and normal P (NP), 250 µM). The population was derived from a cross between Baudin and CN4027, which is a Hordeum spontaneum accession. In two hydroponic trials conducted in 2014 and 2016, seventeen QTLs were detected on chromosomes 2H, 3H, 4H and 5H at the two P concentrations. Eight of these QTLs influenced P acquisition efficiency (PAE). Phenotypic variation explained by a particular PAE-related QTL ranged from 13.3 to 39.9%. One QTL designated as Qspue.sau-3H.01 was related to P utilization efficiency (PUE); the phenotypic variation explained by this QTL was 12.5% (NP concentration) and 13.1% (LP concentration), respectively. Strong associations were observed between biomass and P efficiency-related traits in our study. Two QTL clusters controlling biomass, PAE- and PUE-related traits simultaneously were stably identified in the intervals bPb3263664–bPb3931069 and bPb3264570–bPb4786261 on chromosome 3H at both P concentrations in both trials. The QTLs related to PAE, PUE and biomass are important for the P-tolerant phenotype and may offer valuable clues for fine mapping and map-based cloning of barley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bai C, Liang Y, Hawkesford MJ (2013) Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat. J Exp Bot 64:1745–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balemi T, Schenk MK (2009) Genotypic variation of potato for phosphorus efficiency and quantification of phosphorus uptake with respect to root characteristics. J Plant Soil Sci 172(5):669–677

    Article  CAS  Google Scholar 

  • Batten GD (1992) A review of phosphorus efficiency in wheat. Plant Soil 146:163–168

    Article  CAS  Google Scholar 

  • Bell R, Reuter D, Scott B, Sparrow L, Strong W (2013) Soil phosphorus-crop response calibration relationships and criteria for winter cereal crops grown in Australia. Crop Pasture Sci 64:480–498

    Article  CAS  Google Scholar 

  • Cai HG, Chu Q, Gu RL, Yuan LX, Liu JC, Zhang XZ, Chen FJ, Mi GH, Zhang FS (2012) Identification of QTLs for plant height, ear height and grain yield in maize (Zea mays L.) in response to nitrogen and phosphorus supply. Plant Breed 131:502–510

    Article  CAS  Google Scholar 

  • Chen GD, Li HB, Zheng Z, Wei YM, Zheng YL, Mclntyre CL, Zhou MX, Liu CJ (2012) Characterization of a QTL affecting spike morphology on the long arm of chromosome 3H in barley (Hordeum vulgare L.) based on near isogenic lines and a NIL-derived population. Theor Appl Genet 125:1385–1392

    Article  CAS  PubMed  Google Scholar 

  • Chen GD, Liu YX, Wei YM, Mclntyre CL, Zhou MX, Zheng YL, Liu CJ (2013) Major QTL for Fusarium crown rot resistance in a barley landrace. Theor Appl Genet 126:2511–2520

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Xu L, Cai Y, Xu J (2008) QTL mapping of phosphorus efficiency and relative biologic characteristics in maize (Zea mays L.) at two sites. Plant Soil 313:251–266

    Article  CAS  Google Scholar 

  • Chen J, Xu L, Cai Y, Xu J (2009) Identification of QTLs for phosphorus utilization efficiency in maize (Zea mays L.) across P levels. Euphytica 167:245–252

    Article  CAS  Google Scholar 

  • Devos KM (2005) Updating the ‘Crop Circle’. Curr Opin Plant Biol 8:155–162

    Article  CAS  PubMed  Google Scholar 

  • Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slammet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488:535–539

    Article  CAS  PubMed  Google Scholar 

  • Gong X, Wheeler R, Bovill WD, McDonald GK (2016) QTL mapping of grain yield and phosphorus efficiency in barley in a Mediterranean-like environment. Theor Appl Genet 129:1657–1672

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Kong FM, Xu YF, Zhao Y, Liang X, Wang YY, An DG, Li SS (2012) QTL mapping for seedling traits in wheat grown under varying concentrations of N, P and K nutrients. Theor Appl Genet 124(5):851–865

    Article  CAS  PubMed  Google Scholar 

  • Hammond JP, Broadley MR, White PJ, King GJ, Bowen HC, Hayden R, Meacham MC, Mead A, Overs T, Spracklen WP, Greenwood DJ (2009) Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. J Ext Bot 60:1953–1968

    Article  CAS  Google Scholar 

  • Islamovic E, Obert DE, Oliver RE (2013) A new genetic linkage map of barley (Hordeum vulgare L.) facilitates genetic dissection of height and spike length and angle. Field Crops Res 154:91–99

    Article  Google Scholar 

  • James RA, Weligama C, Verbyla K, Ryan PR, Rebetzke GJ, Rattey A, Richardson AE, Delhaize E (2016) Rhizosheaths on wheat grown in acid soils: phosphorus acquisition efficiency and genetic control. J Ext Bot 67:3709–3718

    Article  CAS  Google Scholar 

  • Jiang SH (1999) Analysis of plant moisture content, dry matter, crude ash and total nitrogen, phosphorus, potassium concentration. In: Lu RK (ed) Analysis of soil agrochemistry, chapter 26, 312–314. Chinese Agricultural Science and Technology Press (in Chinese)

  • Kjaer B, Jensen J (1995) The inheritance of nitrogen and phosphorus content in barley analysed by genetic markers. Hereditas 123:109–119

    Article  CAS  Google Scholar 

  • Li J, Xie Y, Dai A, Liu L, Li Z (2009) Root and shoot traits responses to phosphorus deficiency and QTL analysis at seedling stage using introgression lines of rice. J Genet Genomics 36:173–183

    Article  CAS  PubMed  Google Scholar 

  • Li M, Guo XH, Zhang M, Wang XP, Zhang GD, Tian YC, Wang ZL (2010) Mapping QTLs for grain yield and yield components under high and low phosphorus treatments in maize (Zea mays L.). Plant Sci 178:454–462

    Article  CAS  Google Scholar 

  • Li YD, Wang YJ, Tong YP, Gao JG, Zhang JS, Chen SY (2005) QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L. Merr.). Euphytica 142:137–142

    Article  CAS  Google Scholar 

  • Liang Q, Cheng X, Mei M, Yan X, Liao H (2010) QTL analysis of root traits as related to phosphorus efficiency in soybean. Ann Bot-London 106:223–234

    Article  CAS  Google Scholar 

  • Liu CJ, Atkinson MD, Chinoy CN, Devos KM, Gale MD (1992) Non homoeologous translocations between group 4, 5 and 7 chromosomes within wheat andrye. Theor Appl Genet 83:305–312

    Article  CAS  PubMed  Google Scholar 

  • Mathew JP, Herbert SJ, Zhang S, Rautenkranz AAF, Litchfield GV (2000) Differential response of soybean yield components to the timing of light enrichment. Agron J 92:1156–1161

    Article  Google Scholar 

  • Mehrvarz S, Chaichi MR, Alikhani HA (2008) Effect of phosphate solubilizing microorganisms and phosphorus chemical fertilizer on forage and grain quality of barely (Hordeum vulgare L.). Agric Environ Sci 3:855–860

    Google Scholar 

  • Mendes FF, Guimarães LJ, Souza JC, Guimarães PEO, Magalhaes JV, Garcia AAF, Parentoni SN, Guimaraes CT (2014) Genetic architecture of phosphorus use efficiency in tropical maize cultivated in a low-P soil. Crop Sci 54:1530–1538

    Article  Google Scholar 

  • Parentoni SN, Souza Júnior CL (2008) Phosphorus acquisition and internal utilization efficiency in tropical maize genotypes. Pesqui Agropecu Bras 43(7):893–901

    Article  Google Scholar 

  • Richardson AE, Hocking PJ, Simpson RJ, George TS (2009) Plant mechanisms to optimise access to soil phosphorus. Crop Pasture Sci 60:124–143

    Article  CAS  Google Scholar 

  • Rose TJ, Rose MT, Pariasca Tanaka J, Heuer S, Wissuwa M (2011) The frustration with utilization: why have improvements in internal phosphorus utilization efficiency in crops remained so elusive? Front Plant Sci 2:73

    PubMed  PubMed Central  Google Scholar 

  • Rose TJ, Wissuwa M (2012) Rethinking internal phosphorus utilization efficiency: a new approach is needed to improve PUE in grain crops. Adv Agron 116:185–217

    Article  CAS  Google Scholar 

  • Shen J, Li H, Neumann G, Zhang F (2005) Nutrient uptake, cluster root formation and exudation of protons and citrate in Lupinus albus as affected by localized supply of phosphorus in a split-root system. Plant Sci 168:837–845

    Article  CAS  Google Scholar 

  • Sarkar S, Yelne R, Chatterjee M, Das P, Debnath S, Chakraborty A, Mandal N, Bhattacharya K, Bhattacharya S (2011) Screening for phosphorus (P) tolerance and validation of Pup-1 linked markers in indica rice. Indian J Genet Pl Br 71:209

    CAS  Google Scholar 

  • Sattari SZ, Bouwman AF, Giller KE, Van Ittersum MK (2012) Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc Natl Acad Sci USA 109:6348–6353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulte D, Close TJ, Graner A, Langride P, Matsumoto T, Muehlbauer G, Sato K, Schulman AH, Waugh R, Wise RP, Stein N (2009) The international barley sequencing consortium—at the threshold of efficient access to the barley genome. Plant Physiol 149:142–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi R, Li H, Tong Y, Jing R, Zhang F, Zou C (2008) Identification of quantitative trait locus of zinc and phosphorus density in wheat (Triticum aestivum L.) grain. Plant Soil 306(1–2):95–104

    Article  CAS  Google Scholar 

  • Su JY, Xiao YM, Li M, Liu QY, Li B, Tong YP, Jia JZ, Li ZS (2006) Mapping QTLs for phosphorus-deficiency tolerance at wheat seedling stage. Plant Soil 281:25–36

    Article  CAS  Google Scholar 

  • Su JY, Zheng Q, Li HW, Li B, Jing RL, Tong YP, Li ZS (2009) Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Sci 176:824–836

    Article  CAS  Google Scholar 

  • Van de Wiel CCM, van der Linden CG, Scholten OE (2016) Improving phosphorus use efficiency in agriculture: opportunities for breeding. Euphytica 207:1–22

    Article  Google Scholar 

  • Van Ooijen JW (2004) MapQTL version 5.0, Software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen

  • Van Ooijen JW (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Vance CP (2010) Quantitative trait loci, epigenetics, sugars, and microRNAs: quaternaries in phosphate acquisition and use. Plant Physiol 154:582–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veneklaas EJ, Lambers H, Bragg J, Finnegan PM, Lovelock CE, Plaxton WC, Price CA, Scheible WR, Shane MW, White PJ, Raven JA (2012) Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol 195:306–320

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MAPCHART: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Shen J, Liao H (2010) Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Sci 179:302–306

    Article  CAS  Google Scholar 

  • Wissuwa M, Wegner J, Ae N, Yano M (2002) Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor Appl Genet 105:890–897

    Article  CAS  PubMed  Google Scholar 

  • Wissuwa M, Yano M, Ae N (1998) Mapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet 97:777–783

    Article  CAS  Google Scholar 

  • Xu Y, Wang R, Tong Y, Zhao H, Xie Q, Liu D, Zhang AM, Li B, Xu HX, An DG (2014) Mapping QTLs for yield and nitrogen-related traits in wheat: influence of nitrogen and phosphorus fertilization on QTL expression. Theor Appl Genet 127:59–72

    Article  CAS  PubMed  Google Scholar 

  • Xue AO, Guo XH, Qian ZHU, Zhang HJ, Wang HY, Han XR, Zhao MH, Xie FT (2014) Effect of phosphorus fertilization to P uptake and dry matter accumulation in soybean with different P efficiencies. J Integr Agric 13:326–334

    Article  Google Scholar 

  • Yan X, Liao H, Beebe SE, Blair MW, Lynch JP (2004) QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant Soil 265:17–29

    Article  CAS  Google Scholar 

  • Yang M, Ding G, Shi L, Xu F, Meng J (2011) Detection of qtl for phosphorus efficiency at vegetative stage in brassica napus. Plant Soil 339:97–111

    Article  CAS  Google Scholar 

  • Zhang D, Cheng H, Geng LY, Kan GZ, Cui SY, Meng QC, Gai JY, Yu DY (2009) Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seedling stage. Euphytica 167:313–322

    Article  CAS  Google Scholar 

  • Zheng Z, Wang HB, Chen GD, Yan GJ, Liu CJ (2013) A procedure allowing up to eight generations of wheat and nine generations of barley per annum. Euphytica 191:311–316

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31401377), Sichuan Science and Technology Support Project (2014NZ0008) and Project of Education Department in Sichuan Province (14ZA0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xizhou Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Chen, G., Zhang, X. et al. Mapping quantitative trait loci for tolerance to phosphorus-deficiency at the seedling stage in barley. Euphytica 213, 114 (2017). https://doi.org/10.1007/s10681-017-1907-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-1907-3

Keywords

Navigation