Skip to main content
Log in

DNA marker-assisted evaluation of fruit acidity in diverse peach (Prunus persica) germplasm

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Fruit acidity is a major determinant of consumer-perceived fruit quality in peach. The non-acid peaches are preferred in the market and this trait is usually selected in commercial breeding programs. A major gene (D/d) located on chromosome 5 of peach has been described for this character, where the non-acid character is determined by the dominant D allele. The corresponding physical location estimated through linkage analysis is 0.9 Mb of the chromosome 5. In our study, we identified a SNP from re-sequencing 129 varieties through genome-wide association studies, and then genotyped a collection of 436 varieties on the Sequenom MassArray platform to verify the single nucleotide polymorphism (SNP) marker for this character. Two hundred and twelve accessions from 224 accessions tasting acid are TT. Two hundred accessions from 212 accessions tasting non-acid are TC or CC. The accuracy rate was 94.5 %. Based on the SNP marker, we also designed primers used for PCR to identify non-acid peaches. This approach was validated on 169 cultivars and 84 offspring. Data were always consistent and 160 cultivars (94.7 %) and 80 offspring (95.2 %) fit the expectations. These three methods of selecting non-acid plants are convenient and readily useful for peach molecular assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adhikari T et al (2004) Molecular mapping of Stb1, a potentially durable gene for resistance to septoria tritici blotch in wheat. Theor Appl Genet 109:944–953

    Article  CAS  PubMed  Google Scholar 

  • Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322:881–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berüter J (1993) Characterization of the permeability of excised apple tissue 2. J Exp Bot 44:519–528

    Article  Google Scholar 

  • Borsani J et al (2009) Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. J Exp Bot 60:1823–1837

    Article  CAS  PubMed  Google Scholar 

  • Boudehri K, Bendahmane A, Cardinet G, Troadec C, Moing A, Dirlewanger E (2009) Phenotypic and fine genetic characterization of the D locus controlling fruit acidity in peach. BMC Plant Biol 9:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Burton PR et al (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Article  CAS  Google Scholar 

  • Consortium IH (2005) A haplotype map of the human genome. Nature 437:1299–1320

    Article  Google Scholar 

  • Crisosto CH, Valero D (2008) Harvesting and postharvest handling of peaches for the fresh market. In: Layne DR, Bassi D (eds) The peach: botany, production and uses. CABI, London, pp 575–596

    Chapter  Google Scholar 

  • Dalmau R, Iglesias I, Casals M, Bonany J, Carbó J, Montserrat R (2005) Innovación varietal en melocotonero: espeical referencia a la nuevas variantes de nectarina. Fruticultura profesional 152:6–36

    Google Scholar 

  • Delwiche M, Baumgardner R (1983) Ground color measurements of peach. J Am Soc Hortic Sci 108:1012–1016

    Google Scholar 

  • Delwiche M, Baumgardner R (1985) Ground color as a peach maturity index. J Am Soc Hortic Sci 110:53–57

    Google Scholar 

  • Dirlewanger E, Pronier V, Parvery C, Rothan C, Guye A, Monet R (1998) Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers. Theor Appl Genet 97:888–895

    Article  CAS  Google Scholar 

  • Eduardo I et al (2014) Development of diagnostic markers for selection of the subacid trait in peach. Tree Genet Genomes 10:1695–1709

    Article  Google Scholar 

  • Etienne C, Moing A, Dirlewanger E, Raymond P, Monet R, Rothan C (2002a) Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation: involvement in regulating peach fruit acidity. Physiol Plantarum 114:259–270

    Article  CAS  Google Scholar 

  • Etienne C et al (2002b) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:145–159

    Article  CAS  PubMed  Google Scholar 

  • Frazer KA et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861

    Article  CAS  PubMed  Google Scholar 

  • Gasic K, Quick R, Abdelghafar A, Frett T, Rauh B, Reighard G (2014) Marker assisted breeding for red skin coloration in peach. In: Plant and animal genome XXII conference, Plant and animal genome, 2014

  • Gupta SK, Charpe A, Koul S, Prabhu KV, Haq QMR (2005) Development and validation of molecular markers linked to an Aegilops umbellulata-derived leaf-rust-resistance gene, Lr9, for marker-assisted selection in bread wheat. Genome 48:823–830

    Article  CAS  PubMed  Google Scholar 

  • Herbers K, Sonnewald U (1998) Molecular determinants of sink strength. Curr Opin Plant Biol 1:207–216

    Article  CAS  PubMed  Google Scholar 

  • Ho L (1996) The mechanism of assimilate partitioning and carbohydrate compartmentation in fruit in relation to the quality and yield of tomato. J Exp Bot 47:1239–1243

    Article  CAS  PubMed  Google Scholar 

  • Huang X et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    Article  CAS  PubMed  Google Scholar 

  • Iglesias I, Echeverría G (2009) Differential effect of cultivar and harvest date on nectarine colour, quality and consumer acceptance. Sci Hortic 120:41–50

    Article  Google Scholar 

  • Kader AA, Heintz CM, Chordas A (1982) Postharvest quality of fresh and canned clingstone peaches as influenced by genotypes and maturity at harvest. J Amer Soc Hort Sci 107:947–951

    Google Scholar 

  • Khan SA, Beekwilder J, Schaart JG, Mumm R, Soriano JM, Jacobsen E, Schouten HJ (2013) Differences in acidity of apples are probably mainly caused by a malic acid transporter gene on LG16. Tree genet genomes 9(2):475–487

    Article  Google Scholar 

  • Martinoia E, Massonneau A, Frangne N (2000) Transport processes of solutes across the vacuolar membrane of higher plants. Plant Cell Physiol 41:1175–1186

    Article  CAS  PubMed  Google Scholar 

  • Meredith FI, Robertson JA, Horvat RJ (1989) Changes in physical and chemical parameters associated with quality and postharvest ripening of Harvester peaches. J Agr Food Chem 37:1210–1214

    Article  CAS  Google Scholar 

  • Reig G, Iglesias I, Gatius F, Alegre S (2013) Antioxidant capacity, quality, and anthocyanin and nutrient contents of several peach cultivars [Prunus persica (L.) Batsch] grown in Spain. J Agr Food Chem 61:6344–6357

    Article  CAS  Google Scholar 

  • Rood P (1957) Development and evaluation of objective maturity indices for California freestone peaches. In: Proc Amer Soc Hort Sci. p 104–112

  • Ru S, Main D, Evans K, Peace C (2015) Current applications, challenges, and perspectives of marker-assisted seedling selection in Rosaceae tree fruit breeding. Tree Genet Genomes 11:1–12

    Article  Google Scholar 

  • Sadka A, Dahan E, Cohen L, Marsh KB (2000a) Aconitase activity and expression during the development of lemon fruit. Physiol Plantarum 108:255–262

    Article  CAS  Google Scholar 

  • Sadka A, Dahan E, Or E, Cohen L (2000b) NADP+ -isocitrate dehydrogenase gene expression and isozyme activity during citrus fruit development. Plant Sci 158:173–181

    Article  CAS  PubMed  Google Scholar 

  • Sardesai N, Nemacheck J, Subramanyam S, Williams C (2005) Identification and mapping of H32, a new wheat gene conferring resistance to Hessian fly. Theor Appl Genet 111:1167–1173

    Article  CAS  PubMed  Google Scholar 

  • Sosinski B et al (2000) Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor Appl Gene 101:421–428

    Article  CAS  Google Scholar 

  • Terrier N, Deguilloux C, Sauvage F-X, Martinoia E, Romieu C (1998) Proton pumps and anion transport in Vitis vinifera: the inorganic pyrophosphatase plays a predominant role in the energization of the tonoplast. Plant Physiol Bioch 36:367–377

    Article  CAS  Google Scholar 

  • Widstrom N, Butron A, Guo B, Wilson D, Snook M, Cleveland T, Lynch R (2003) Control of preharvest aflatoxin contamination in maize by pyramiding QTL involved in resistance to ear-feeding insects and invasion by Aspergillus spp. Eur J Agron 19:563–572

    Article  CAS  Google Scholar 

  • Wu BH, Quilot B, Génard M, Kervella J, Li SH (2005) Changes in sugar and organic acid concentrations during fruit maturation in peaches, P. davidiana and hybrids as analyzed by principal component analysis. Sci Hortic-Amsterdam 103(4):429–439

    Article  CAS  Google Scholar 

  • Yamaki S (1986) Roles of four sorbitol related enzymes and invertase in the seasonal alteration of sugar metabolism in apple tissue. J Amer Soc Hort Sci 111:134–137

    CAS  Google Scholar 

  • Yang Z, Gilbert J, Fedak G, Somers DJ (2005) Genetic characterization of QTL associated with resistance to Fusarium head blight in a doubled-haploid spring wheat population. Genome 48:187–196

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M (1970) Genétical studies on the fruit quality of peach varieties. I. Acidity bulletin of the horticultural research station A9 Japan, p 1-15

Download references

Acknowledgments

This work was supported by the Hi-Tech Research and Development (863) Program of China (2013AA102606);Research Team of CAAS(CAAS-ASTIP-2015-ZFRI-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lirong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wang, L., Zhu, G. et al. DNA marker-assisted evaluation of fruit acidity in diverse peach (Prunus persica) germplasm. Euphytica 210, 413–426 (2016). https://doi.org/10.1007/s10681-016-1709-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-016-1709-z

Keywords

Navigation