Skip to main content
Log in

Single nucleotide polymorphisms of fad2 gene from tung tree, Vernicia fordii, a potential biodiesel plant

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Tung tree, Vernicia fordii, is an oil-producing plant with multiple uses, especially with its great potential in biodiesel production. Single nucleotide polymorphism (SNP) providing an abundant source of DNA polymorphisms, is essential for developing new cultivars with high yield, good quality, and wide adaptation. However, there are a few reports about the DNA sequence variation in tung tree, especially about the key genes involved in lipid biosynthesis. In the present study, a 1.2-kb coding region of fad2 gene, encoding oleate desaturase, was investigated by sequencing a sample population of 38 nationwide V. fordii accessions. Two SNPs were detected, giving an average SNP frequency of 1/576 bases and average nucleotide diversity of 0.00041 (θw). Although the number of SNPs is small, the two SNPs resulted in changed amino acids. Further analysis of the fatty acid (FA) compositions for the mutant accessions suggested that both of the two SNPs in the fad2 coding region were likely to increase levels of polyunsaturated FAs, especially the content of eleostearic. The fad2 gene is very important and conservative among many plant species, and also among diverse tung tree germplasm accessions. Nonsynonymous mutations could occur in the coding region of this gene, even though the rate is low in tung tree. This characterization of the fad2 gene from tung tree and its possible effect on lipid metabolism should provide new insights into the regulation of seed lipid metabolism. It is feasible to manipulate seed oil composition of tung tree using genetic and genomic approaches for a variety of applications in industry and energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bouaid A, Martinez M, Aracil J (2007) Long storage stability of biodiesel from vegetable and used frying oils. Fuel 86:2596–2602

    Article  CAS  Google Scholar 

  • Broadwater JA, Whittle E, Shanklin J (2002) Desaturation and hydroxylation: residues 148 and 324 of Arabidopsis FAD2, in addition to substrate chain length, exert a major influence in partitioning of catalytic specificity. J Biol Chem 277:15613–15620

    Article  Google Scholar 

  • Broun P, Shanklin J, Whittle E, Somerville C (1998) Catalytic plasticity of fatty acid modification enzymes underlying chemical diversity of plant lipids. Science 282:1315–1317

    Article  PubMed  CAS  Google Scholar 

  • Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB (2004) Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc Natl Acad Sci 101:15255–15260

    Article  PubMed  CAS  Google Scholar 

  • Cahoon EB, Carlson TJ, Ripp KG, Schweiger BJ, Cook GA, Hall SE, Kinney AJ (1999) Biosynthetic origin of conjugated double bonds: production of fatty acid components of high-value drying oils in transgenic somatic soybean embryos. Proc Natl Acad Sci 96:12935–12940

    Article  PubMed  CAS  Google Scholar 

  • Cai Y, Sun DK, Wu GJ, Peng JH (2010) ISSR-based genetic diversity of Jatropha curcas germplasm in China. Biomass Bioenerg 34:1739–1750

    Article  CAS  Google Scholar 

  • Caicedo AL, Williamson S, Hernandez RD, Boyko A, Fledel-Alon A, York TL, Polato NR, Olsen KM, Nielsen R, McCouch SR, Bustamante CD, Purugganan MD (2007) Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genet 3:1745–1756

    Article  PubMed  CAS  Google Scholar 

  • Chen YH, Zhou G, Wang Y, Xu L (2010a) F-BOX and oleosin: additional target genes for future metabolic engineering in tung trees? Ind Crops Prod 32:684–686

    Article  CAS  Google Scholar 

  • Chen YH, Chen JH, Chang CY, Chang CC (2010b) Biodiesel production from tung (Vernicia montana) oil and its blending properties in different fatty acid compositions. Bioresour Technol 101:9521–9526

    Article  PubMed  CAS  Google Scholar 

  • Clemente TE, Cahoon EB (2009) Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol 151:1030–1040

    Article  PubMed  CAS  Google Scholar 

  • Drysdale CM, McGraw DW, Stack CB, Stephens JC, Judson RS, Nandabalan K, Arnold K, Ruano G, Liggett SB (2000) Complex promoter and coding region beta 2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc Natl Acad Sci 97:10483–10488

    Article  PubMed  CAS  Google Scholar 

  • Dvornyk V, Sirviö A, Mikkonen M, Savolainen O (2003) Low nudeotide diversity at the pal1 locus in the widely distributed Pinus sylvestris. Mol Biol Evol 19:179–188

    Article  Google Scholar 

  • Dyer JM, Chapital DC, Kuan JC, Mullen RT, Turner C, McKeon TA, Pepperman AB (2002) Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung: implications for the evolution of plant fatty acid diversity. Plant Physiol 130:2027–2038

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  • Fitch WM (1977) On the problem of discovering the most parsimonious tree. Am Nat 111:223–257

    Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    PubMed  CAS  Google Scholar 

  • Gilchrist EJ, Haughn GW, Ying CC, Otto SP, Zhuang J, Cheung D, Hamberger B, Aboutorabi F, Kalynyak T, Johnson L, Bohlmann J, Ellis BE, Douglas CJ, Cronk QC (2006) Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Mol Ecol 15:1367–1378

    Article  PubMed  CAS  Google Scholar 

  • González-Martínez SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB (2007) Association genetics in Pinus taeda L. I. Wood property traits. Genetics 175:399–409

    Google Scholar 

  • Guo M, Rupe MA, Zinselmeier C, Habben J, Bowen BA, Smith OS (2004) Allelic variation of gene expression in maize hybrids. Plant Cell 16:1707–1716

    Article  PubMed  CAS  Google Scholar 

  • Guyon-Debast A, Lécureuil A, Bonhomme S, Guerche P, Gallois JL (2010) A SNP associated with alternative splicing of RPT5b causes unequal redundancy between RPT5a and RPT5b among Arabidopsis thaliana natural variation. BMC Plant Biol 10:158–167

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Heppard EP, Kinney AJ, Stecca KL, Miao GH (1996) Developmental and growth temperature regulation of two different microsomal omega-6 desaturase genes in soybeans. Plant Physiol 110:311–319

    Article  PubMed  CAS  Google Scholar 

  • Hernández ML, Mancha M, Martínez-Rivas JM (2005) Molecular cloning and characterization of genes encoding two microsomal oleate desaturases (FAD2) from olive. Phytochemistry 66:1417–1426

    Article  PubMed  Google Scholar 

  • Heuertz M, De Paoli E, Källman T, Larsson H, Jurman I, Morgante M, Lascoux M, Gyllenstrand N (2006) Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce (Picea abies (L.) Karst). Genetics 174:2095–2105

    Article  PubMed  CAS  Google Scholar 

  • Ingvarsson PK (2005) Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European aspen (Populus tremula L., Salicaceae). Genetics 169:945–953

    Article  PubMed  CAS  Google Scholar 

  • Judd WS, Olmstead RG (2004) A survey of tricolpate (Eudicot) phylogenetic relationship. Am J Bot 91:1627–1644

    Article  PubMed  Google Scholar 

  • Kado T, Yoshimaru H, Tsumura Y, Tachida H (2003) DNA variation in a conifer, Cryptomeria japonica (Cupressaceae sensu lato). Genetics 164:1547–1559

    PubMed  CAS  Google Scholar 

  • Kargiotidou A, Deli D, Galanopoulou D, Tsaftaris A, Farmaki T (2008) Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). J Exp Bot 59:2043–2056

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Knothe G (2007) Some aspects of biodiesel oxidative stability. Fuel Process Technol 88:669–677

    Article  CAS  Google Scholar 

  • Kolkman JM, Berry ST, Leon AJ, Slabaugh MB, Tang S, Gao W, Shintani DK, Burke JM, Knapp SJ (2007) Single nucleotide polymorphisms and linkage disequilibrium in sunflower. Genetics 177:457–468

    Article  PubMed  CAS  Google Scholar 

  • Kreitman M (2000) Methods to detect selection in populations with applications to the human. Annu Rev Genomics Hum Genet 1:539–559

    Article  PubMed  CAS  Google Scholar 

  • Krutovsky KV, Neale DB (2005) Nucleotide diversity and linkage disequilibrium in cold-hardiness- and wood quality-related candidate genes in douglas fir. Genetics 171:2029–2041

    Article  CAS  Google Scholar 

  • Martínez-Rivas JM, Sperling P, Lühs W, Heinz E (2001) Spatial and temporal regulation of three different microsomal oleate desaturase genes (FAD2) from normal-type and high-oleic varieties of sunflower (Helianthus annuus L.). Mol. Breed 8:159–168

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C, Zheng H, Bakker E, Calabrese P, Gladstone J, Goyal R, Jakobsson M, Kim S, Morozov Y, Padhukasahasram B, Plagnol V, Rosenberg NA, Shah C, Wall JD, Wang J, Zhao K, Kalbfleisch T, Schulz V, Kreitman M, Bergelson J (2005) The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3:1289–1299

    Article  CAS  Google Scholar 

  • Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147–158

    PubMed  CAS  Google Scholar 

  • Olivier M (2004) From SNPs to function: the effect of sequence variation on gene expression. Physiol Genomics 16:182–183

    PubMed  CAS  Google Scholar 

  • Pan Y, Pan L, Chen L, Zhang LL, Nevo E, Peng JH. (2013) Development of microsatellite markers in the oil-producing species Vernicia fordii, a potential biodiesel feedstock. Applications in Plant Sciences 1 (7): 1200004; doi:10.3732/apps.1200004

  • Park JY, Kim DK, Lee JP, Park SC, Kim YJ, Lee JS (2008a) Blending effects of biodiesels on oxidation stability and low temperature flow properties. Bioresour Technol 99:1196–1203

    Article  PubMed  CAS  Google Scholar 

  • Park JY, Kim DK, Wang ZM, Lu P, Park SC, Lee JS (2008b) Production and characterization of biodiesel from tung oil. Appl Biochem Biotechnol 148:109–117

    Article  PubMed  CAS  Google Scholar 

  • Pirtle IL, Kongcharoensuntorn W, Nampaisansuk M, Knesek JE, Chapman KD, Pirtle RM (2001) Molecular cloning and functional expression of the gene for a cotton Delta-12 fatty acid desaturase (FAD2). Biochim Biophys Acta 1522:122–129

    Article  PubMed  CAS  Google Scholar 

  • Pot D, McMillan L, Echt C, Le Provost G, Garnier-Géré P, Cato S, Plomion C (2005) Nucleotide variation in genes involved in wood formation in two pine species. New Phytol 167:101–112

    Article  PubMed  CAS  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Rupilinus W, Ahmad S (2007) Palm oil and palm kernel oil as raw materials for basic oleochemicals and biodiesel. Eur J Lipid Sci Technol 109:433–439

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    Google Scholar 

  • Schaeffer SW, Walthour CS, Toleno DM, Olek AT, Miller EL (2001) Protein variation in ADH and ADH-RELATED in Drosophila pseudoobscura: linkage disequilibrium between single nucleotide polymorphisms and protein alleles. Genetics 159:673–687

    PubMed  CAS  Google Scholar 

  • Schmid KJ, Sorensen TR, Stracke R, Torjek O, Altmann T, Mitchell-Olds T, Weisshaar B (2003) Large-scale identification and analysis of genome-wide single nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Res 13:1250–1257

    Article  PubMed  Google Scholar 

  • Shang Q, Jiang W, Lu H, Liang B (2010) Properties of tung oil biodiesel and its blends with 0# diesel. Bioresour Technol 101:826–828

    Article  PubMed  CAS  Google Scholar 

  • Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Ann Rev Plant Physiol Plant Mol Biol 49:611–641

    Article  CAS  Google Scholar 

  • Shen Y (2002) Evolutionary biology. High Education Press, Beijing

    Google Scholar 

  • Shen LX, Basilion JP, Stanton VP Jr (1999) Single nucleotide polymorphisms can cause different structural folds of mRNA. Proc Natl Acad Sci 96:7871–7876

    Article  PubMed  CAS  Google Scholar 

  • Shockey JM, Gidda SK, Chapital DC, Kuan JC, Dhanoa PK, Bland JM, Rothstein SJ, Mullen RT, Dyer JM (2006) Tung tree DGAT1and DGAT2 have nonredundant functions in triacyl glycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell 18:2294–2313

    Article  PubMed  CAS  Google Scholar 

  • Stephens JC, Schneider JA, Tanguay DA, Choi J, Acharya T, Stanley SE, Jiang R, Messer CJ, Chew A, Han JH, Duan J, Carr JL, Lee MS, Koshy B, Kumar AM, Zhang G, Newell WR, Windemuth A, Xu C, Kalbfleisch TS, Shaner SL, Arnold K, Schulz V, Drysdale CM, Nandabalan K, Judson RS, Ruano G, Vovis GF (2001) Haplotype variation and linkage disequilibrium in 313 human genes. Science 293:489–493

    Article  PubMed  CAS  Google Scholar 

  • Swafford DL (2002) PAUP*: Phylogenetic Analysis Using Parsimony (and other methods) 4.0 Beta. In Sinauler Associates, Sunderland, MA

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DAN polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. Mays L.). Proc Natl Acad Sci 98:9161–9166

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Thumma BR, Nolan MF, Evans R, Moran GF (2005) Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics 171:1257–1265

    Article  PubMed  CAS  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr & Gray). Science 313:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Yin Z, Tan Z, Liu J, Deng S (2008) Chemical constituents of Laifeng “Gold—thread’’ tung oil. J Hubei Univ Nationalitie 26:291–293

    CAS  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Zhang Z (2005) Single nucleotide polymorphisms (SNPs) discovery and linkage disequilibrium (LD) in forest trees. Forestry Studies in China 7:1–14

    Article  Google Scholar 

  • Zhang LL, Wang B, Pan L, Peng JH (2013) Recycling isolation of plant DNA, a novel method. J Genet Genomics 40:45–54

    Article  PubMed  CAS  Google Scholar 

  • Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are greatly indebted to the two anonymous reviewers for their critical, helpful and constructive comments on this manuscript. We also sincerely thank Ms. Robin Permut, English editor in the Institute of Evolution at University of Haifa, for her professionally editing the manuscript. This project was supported in part by the Chinese Academy of Sciences under the Important Directional Program of Knowledge Innovation Project Grant Nos. KSCX2-YW-Z-0722 & KSCX2-YW-G-036, the National Natural Science Foundation Grant No. 30870233, China National Special Program for Development of Transgenic Plant & Animal New Cultivars Grant Nos. 2009ZX08002-006B and 2009ZX08002-013B, and the National Special Key Program for Basic Work of Science and Technology contract No. 2008FY110400-1-2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongfa Sun or Junhua Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, J., Guo, R., Chen, L. et al. Single nucleotide polymorphisms of fad2 gene from tung tree, Vernicia fordii, a potential biodiesel plant. Euphytica 194, 93–107 (2013). https://doi.org/10.1007/s10681-013-0978-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-013-0978-z

Keywords

Navigation