Skip to main content
Log in

Single nucleotide polymorphisms (SNPs) discovery and linkage disequilibrium (LD) in forest trees

  • Published:
Forestry Studies in China

Abstract

With completion of the Populus genome sequencing project and the availability of many expressed sequence tags (ESTs) databases in forest trees, attention is now rapidly shifting towards the study of individual genetic variation in natural populations. The most abundant form of genetic variation in many eukaryotic species is represented by single nucleotide polymorphisms (SNPs), which can account for heritable inter-individual differences in complex phenotypes. Unlike humans, the linkage disequilibrium (LD) rapidly decays within candidate genes in forest trees. Thus, SNPs-based candidate gene association studies are considered to be a most effective approach to dissect the complex quantitative traits in forest trees. The present study demonstrates that LD mapping can be used to identify alleles associated with quantitative traits and suggests that this new approach could be particularly useful for performing breeding programs in forest trees. In this review, we will describe the fundamentals, patterns of SNPs distribution and frequency, summarize recent advances in SNPs discovery and LD and comment on the application of LD in the dissection of complex quantitative traits in forest tress. We also put forward the outlook for future SNPs-based association analysis of quantitative traits in forest trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barendse W, Armitage S M. 2001. The single strand conformational analysis of cattle and human single nucleotide polymorphisms may be biased towards specific sequence motifs that minimize local secondary structure of single strand DNA. Anim Biotechnol. 12: 21–8

    Article  PubMed  CAS  Google Scholar 

  • Botstein D, White R L, Skolnick M, Davis R W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 32: 314–331

    PubMed  CAS  Google Scholar 

  • Bradshaw H D, Stettler R F. 1995. Molecular genetics of growth and development in Populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics 139: 963–973

    PubMed  CAS  Google Scholar 

  • Brookes A J. 1999. The essence of SNPs. Gene. 234: 177–186

    Article  PubMed  CAS  Google Scholar 

  • Brown G R, Gill G P, Kuntz R J, Langley C H, Neale D B. 2004. Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc Natl Acad Sci USA. 101: 15 255–15 260

    CAS  Google Scholar 

  • Cannon G B. 1963. The effects of natural selection on linkage disequilibrium and relative fitness in experimental population of Drosophila melanogaster. Genetics. 48: 1 201–1 216

    CAS  Google Scholar 

  • Carlson C S, Aldred S F, Lee P K, Tracy R P, Schwartz S M, Rieder M, Liu K, Williams O D, Iribarren C, Lewis E C, Fornage M, Boerwinkle E, Gross M, Jaquish C, Nickerson D A, Myers R M, Siscovick D S, Reiner A P. 2005. Polymorphisms within the C-reactive protein (CRP) promoter region rre associated with plasma CRP levels. Am J Hum Genet. 77: 64–77

    Article  PubMed  CAS  Google Scholar 

  • Chan E Y. 2005. Advances in sequencing technology. Mutation Research. 573: 13–40

    PubMed  CAS  Google Scholar 

  • Charlesworth B, Charlesworth D. 1979. The evolutionary genetics of sexual systems in flowering plants. Proc R Soc Lond Ser B Biol Sci. 205: 513–530

    Article  CAS  Google Scholar 

  • Cheng R, Ma J Z, Elston R C, Li M D. 2005. Fine mapping functional sites or regions from case-control data using haplotypes of multiple linked SNPs. Annals of Human Genetics. 69: 102–112

    Article  PubMed  CAS  Google Scholar 

  • Choy Y S, Dabora S L, Hall F, Ramesh V, Niida Y, Franz D, Kasprzyk-Obara J, Reeve M P, Kwiatkowski D J. 1999. Superiority of denaturing high performance liquid chromatography over single-stranded conformation and conformation-sensitive gel electrophoresis for mutation detection in TSC2. Ann Hum Genet. 63: 383–391

    Article  PubMed  CAS  Google Scholar 

  • Cooper D N, Youssoufian H. 1988. The CpG dinucleotide and human genetic disease. Hum Genet. 78: 151–155

    Article  PubMed  CAS  Google Scholar 

  • Cooper D N, Krawczak M. 1990. The mutational spectrum of single base-pair substitutions causing human genetic disease: patterns and predictions. Hum Genet. 85: 55–74

    Article  PubMed  CAS  Google Scholar 

  • Dantec L L, Chagne D, Pot D, Cantin O, Garnier-Gere P, Bedon F, Frigerio J M, Chaumeil P, Leger P, Garcia V, Laigret F, de Daruvar A, Plomion C. 2004. Automated SNP detection in expressed sequence tags: statistical considerations and application to maritime pine sequences. Plant Molecular Biology. 54: 461–470

    Article  PubMed  Google Scholar 

  • Delvin B, Risch N. 1995. A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics. 29: 311–322

    Article  Google Scholar 

  • Dvornyk V, Sirviö A, Mikkonen M, Savolainen O. 2003. Low nudeotide diversity at the pal/locus in the widely distributed Pinus sylvestris. Mol Biol Evo. 19: 179–188

    Google Scholar 

  • Fairbrother W G, Yeh R F, Sharp P A, Burge C B. 2002. Predictive identification of exonic splicing enhancers in human genes. Science. 297: 1 007–1 013

    Article  CAS  Google Scholar 

  • Falconer D S, Mackay T F. 1996. Introduction of Quantitative Genetics. Essex, UK: Longman Group Ltd. 464

    Google Scholar 

  • Farnir F, Coppieters W, Arranz J, Berzi P, Cambisano N, Grisart B, Karim L, Marcq F, Moreau L, Mni M, Nezer C, Simon P, Vanmanshoven P, Wagenaar D, Georges M. 2000. Extensive genome-wide linkage disequilibrium in cattle. Genetics. 10: 220–227

    CAS  Google Scholar 

  • Flint-Garcia S A, Thornsberry J M, Buckler E S IV. 2003. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol. 54: 357–374

    Article  PubMed  CAS  Google Scholar 

  • Freudenberg-Hua Y, Freudenberg J, Kluck N, Cichon S, Propping P, Nöthen M M. 2003. Single nucleotide variation analysis in 65 candidate genes for CNS disorders in a representative sample of the European population. Genome Research. 13: 2 271–2 276

    Article  CAS  Google Scholar 

  • Garg K, Green P, Nickerson D A. 1999. Identification of candidate coding region single nucleotide polymorphisms in 165 human genes using assembled expressed sequence tags. Genome Research. 9: 1 087–1 092

    Article  CAS  Google Scholar 

  • Garris A J, McCouch S R, Kresovich S. 2003. Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.). Genetics. 165: 759–769

    PubMed  Google Scholar 

  • Gaut B S, Long A D. 2003. The lowdown on linkage disequilibrium. The Plant Cell. 15: 1 502–1 506

    CAS  Google Scholar 

  • Gillet E M, Scholz F. 1999. Which DNA Marker for Which Purpose? European Union DGXII Biotechnology FW IV Research Programme. 1–5

  • Guo M, Rupe M A, Zinselneier C, Habben J, Bewen B A, Smith O S. 2004. Allelic variation of gene expression in maize hybrids. The Plant Cell. 16: 1 707–1 716

    CAS  Google Scholar 

  • Hagenblad J, Tang C, Molitor J, Werner J, Zhao K, Zheng H, Marjoram P, Weigel D, Nordborg M. 2004. Haplotype structure and phenotypic associations in the chromosomal regions surrounding two Arabidopsis thaliana flowering time loci. Genetics. 168: 1 627–1 638

    Article  CAS  Google Scholar 

  • Harding R M, Fullerton S M, Griffiths R C, Bond J, Cox M J, Schneider J A, Moulin D S, Clegg J B. 1997. Archaic African and Asian lineages in the genetic ancestry of modern humans. Am J Hum Genet. 60: 772–789

    PubMed  CAS  Google Scholar 

  • Hayashi K. 1992. PCR-SSCP: A method for detection of mutations. Genet Anal Tech Appl. 3: 73–79

    Google Scholar 

  • Hill W G, Robertson A. 1968. Linkage disequilibrium in finite populations. Theor Appl Genet. 38: 226–231

    Article  Google Scholar 

  • Hinds D A, Stuve L L, Nilsen G B, Halperin E, Eskin E, Ballinger D G, Frazer K A, Cox D R. 2005. Whole-genome patterns of common DNA variation in three human populations. Science. 307: 1 072–1 079

    Article  CAS  Google Scholar 

  • Hoskins R A, Phan A C, Naeemuddin M, Mapa F A, Ruddy D A, Ryan J J, Young L M, Wells T, Kopczynski C, Ellis M C. 2001. Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster. Genome Research. 11: 1 100–1 113

    Article  CAS  Google Scholar 

  • Ingvarsson P K. 2005. Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European aspen (Populus tremula L., Salicaceae). Genetics. 169: 945–953

    Article  PubMed  CAS  Google Scholar 

  • Jennings H S. 1917. The numerical results of diverse systems of breeding, with respect to two pairs of characters, linked or independent, with special relation to the effects of linkage. Genetics. 2: 97–154

    PubMed  CAS  Google Scholar 

  • Janssen B, Hartmann C, Scholz V, Jauch A, Zschocke J. 2005. MLPA analysis for the detection of deletions, duplications and complex rearrangements in the dystrophin gene: potential and pitfalls. Neurogenetics. 6: 29–35

    Article  PubMed  CAS  Google Scholar 

  • Jorde L B. 2000. Linkage disequilibrium and the search for complex disease genes. Genome Research. 10: 1 435–1 444

    Article  CAS  Google Scholar 

  • Kado T, Yoshimaru H, Tsumura Y, Tachida H. 2003. DNA variation in a conifer, Cryptomeria japonica (Cupressaceae sensu lato). Genetics. 164: 1 547–1 559

    CAS  Google Scholar 

  • Kononoff P J, Deobald H M, Stewart E L, Laycock A D, Marquess L S. 2005. The effect of a leptin single nucleotide polymorphism on quality grade, yield grade, and carcass weight of beef cattle. J Anim Sci. 83: 927–932

    PubMed  CAS  Google Scholar 

  • Kraakman A T, Niks W R E, Van den Berg P M M M, Stam P, Van Eeuwijk F A. 2004. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics. 168: 435–446

    Article  PubMed  CAS  Google Scholar 

  • Kruglyak L. 1999. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet. 22: 139–144

    Article  PubMed  CAS  Google Scholar 

  • Kruglyak L, Nickerson D A. 2001. Variation is the spice of life. Nat Genet. 27: 234–236

    Article  PubMed  CAS  Google Scholar 

  • Kusumi J, Tsumura Y, Yoshimaru H, Tachida H. 2002. Molecular evolution of nuclear genes in Cupressacea, a group of conifer trees. Mol Bio Evol. 5: 736–747

    Google Scholar 

  • Lewontin R C. 1964. The interaction of selection and linkage. I. General considerations: heterotic models. Genetics. 49: 49–67

    PubMed  CAS  Google Scholar 

  • Lichten M J, Fox M S. 1983. Detection of non-homology-containing heteroduplex molecules. Nucleic Acids Res. 11: 3 959–3 971

    Article  CAS  Google Scholar 

  • Long A D, Langley C H. 1999. The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Research. 9: 720–731

    PubMed  CAS  Google Scholar 

  • Long A D, Lyman R F, Langley C H, Mackay T F. 1998. Two sites in the Delta gene region contribute to naturally occurring variation in bristle number in Drosophila melanogaster. Genetics. 149: 999–1017

    PubMed  CAS  Google Scholar 

  • Maniatis T, Tasic B. 2002. Alternative splicing pre-mRNA splicing and proteome expansion in metazoans. Nature. 418: 236–243

    Article  PubMed  CAS  Google Scholar 

  • Mcrae A F, McEwan J C, Dodds K G, Wilson T, Crawford A M, Slate J. 2002. Linkage disequilibrium in domestic sheep. Genetics. 160: 1 113–1 122

    CAS  Google Scholar 

  • Nachman M W. 2002. Variation in recombination rate across the genome: evidence and implications. Curr Opin Genet Dev. 12: 657–663

    Article  PubMed  CAS  Google Scholar 

  • Neale D B, Savolainen O. 2004. Association genetics of complex traits in conifers. Trends in Plant Science. 9: 325–330

    Article  PubMed  CAS  Google Scholar 

  • Nordborg M. 2000. Linkage disequilibrium, gene trees and selfing: an ancestral recombination graph with partial self-fertilization. Genetics. 154: 923–929

    PubMed  CAS  Google Scholar 

  • Nordborg M, Borevitz J O, Bergelson J, Berry C C, Chory J, Hagenblad J, Kreitman M, Maloof J N, Noyes T, Oefner P J, Stahl E A, Weigel D. 2002. The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet. 30: 190–193

    Article  PubMed  CAS  Google Scholar 

  • Nowotny P, Kwon J M, Goate A M. 2001. SNP analysis to dissect human traits. Current Opinion in Neurobiology. 11: 637–641

    Article  PubMed  CAS  Google Scholar 

  • Nsengimana J, Baret P, Haley C S, Visscher P M. 2004. Linkage disequilibrium in the domesticated pig. Genetics. 166: 1 395–1 404

    Article  Google Scholar 

  • Nyren P, Karamohamed S, Ronaghi M. 1997. Detection of single-base changes using a bioluminometric primer extension assay. Analytical Biochemistry. 244: 367–373

    Article  PubMed  CAS  Google Scholar 

  • Oefner P, Underhill P A. 1995. Comparative DNA sequencing by denaturing high-performance liquid chromatography. Am J Hum Genet. 57S: 755–761

    Google Scholar 

  • Olsen K M, Halldorsdottir S S, Stinchcombe J R, Weinig C, Schmitt J, Purugganan M D. 2004. Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles. Genetics. 167: 1 361–1 369

    Article  CAS  Google Scholar 

  • Olivier M. 2004. From SNPs to function: the effect of sequence variation on gene expression. Physiol Genomics. 16: 182–183

    PubMed  CAS  Google Scholar 

  • Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T. 1989. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA. 86: 2 766–2 770

    Article  CAS  Google Scholar 

  • Picoult-Newberg L, Ideker T E, Pohl M G, Taylor S L, Donaldson M A, Nickerson D A, Boyce-Jacino M. 1999. Mining SNPs from EST databases. Genome Res. 9: 167–174

    PubMed  CAS  Google Scholar 

  • Plomion C, Cooke J, Richardson T, Mackay J, Tuskan G. 2003. Report on the forest trees workshop at the plant and animal genome conference. Comp Funct Genom. 4: 229–238

    Article  CAS  Google Scholar 

  • Pot D, McMillan L, Echt C, Procost G L, Garnier-Gere P, Cato S, Plomion C. 2005. Nucleotide variation in genes involved in wood formation in two pine species. New Phytologist. 167: 101–112

    Article  PubMed  CAS  Google Scholar 

  • Rajora O P, Barrett J W, Dancik B P, Strobeck C. 1992. Maternal transmission of mitochondrial DNA in interspecific hybrids of Populus. Curr Genet. 22: 141–145

    Article  PubMed  CAS  Google Scholar 

  • Reich D E, Cargill M, Bolk S, Ireland J, Sabeti P C, Richter D J, Lavery T, Kouyoumjian R, Farhadian S F, Ward R, Lander E S. 2001. Linkage disequilibrium in the human genome. Nature. 411: 199–204

    Article  PubMed  CAS  Google Scholar 

  • Remington D L, Thornsberry J M, Matsuoka Y, Wilson L M, Whitt S R, Doebley J, Kresovich S, Goodman M M, Buckler E S. 2001. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA. 98: 11 479–11 484

    Article  CAS  Google Scholar 

  • Sanger F, Coulson S, Coulson A R. 1977. DNA sequencing with chain-termination inhibitors. Proc Natl Acad Sci USA. 74: 5 463–5 467

    Article  CAS  Google Scholar 

  • Schaeffer S W, Walthour C S, Toleno D M, Olek A T, Miller E L. 2001. Protein variation in ADH and ADH-RELATED in Drosophila pseudoobscura: linkage disequilibrium between single nucleotide polymorphisms and protein alleles. Genetics. 159: 673–687

    PubMed  CAS  Google Scholar 

  • Schmid K J, Sorensen T R, Stracke R, Torjek O, Altmann T, Mitchell-Olds T, Weisshaar B. 2003. Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Res. 13: 1 250–1 257

    Article  Google Scholar 

  • Schneider J A, Pungliya M S, Choi J Y, Jiang R, Sun X J, Salisbury B A, Stephens J C. 2003. DNA variability of human genes. Mechanism of Ageing and Development. 124: 17–25

    Article  CAS  Google Scholar 

  • Schouten J P, McElgunn C J, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. 2002. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Research. 30: e57

  • Sewell M M, Neale D B. 2000. Mapping quantitative traits in forest trees. In: Molecular Biology of Woody Plants (Jain S M, Minocha S C eds). New York: Kluwer Academic Publishers. 407–423.

    Google Scholar 

  • Shen L X, Basilion J P, Stanton Jr. V P. 1999. Single-nucleotide polymorphisms can cause different structural folds of mRNA. Proc Natl Acad Sci USA. 96: 7 871–7 876

    CAS  Google Scholar 

  • Shirasawa K, Monna L, Kishitani S, Nishio T. 2004. Single nucleotide polymorphisms in randomly selected genes among japonica rice (Oryza sativa L.) varieties identified by PCR-RF-SSCP. DNA Research. 117: 275–283

    Article  Google Scholar 

  • Suha Y, Vijg J. 2005. SNP discovery in associating genetic variation with human disease phenotypes. Mutation Research. 573: 41–53

    Google Scholar 

  • Sutter N B, Eberle M A, Parker H G, Pullar B J, Kirkness E F, Kruglyak L, Ostrander E A. 2004. Extensive and breed-specific linkage disequilibrium in Canis familiaris. Genome Research. 14: 2 388–2 396

    Article  CAS  Google Scholar 

  • Tenaillon M, Sawkins M C, Long A D, Gaut R L, Doebley J F, Gaut B S. 2001. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA. 98: 9 161–9 166

    Article  CAS  Google Scholar 

  • Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S. 2001. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet. 28: 286–289

    Article  PubMed  CAS  Google Scholar 

  • Viard F, Franck P, Dubois M P, Estoup A, Jarne P. 1998. Variation of microsatellite size homoplasy across electro-morphs, loci, and populations in three invertebrate species. J Mol Evol. 47: 42–51

    Article  PubMed  CAS  Google Scholar 

  • Wang D G, Fan J B, Siao C J, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris M S, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson T J, Lipshutz R, Chee M, Lander E S. 1998. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 280: 1 077–1 082

    CAS  Google Scholar 

  • Wang W, Thornton K, Berry A, Long M. 2002. Nucleotide variation along the Drosophila melanogaster fourth chromosome. Science. 295: 134–137

    Article  PubMed  CAS  Google Scholar 

  • Wenz H M, Baumhueter S, Ramachandra S, Worwood M. 1999. A rapid automated SSCP multiplex capillary electrophoresis protocol that detects the two common mutations implicated in hereditary hemochromatosis (HH). Hum Genet. 104: 29–35

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y L, Song Q J, Hyten D L, Van Tassell C P, Matukumalli L K, Grimm D R, Hyatt S M, Fickus E W, Young N D, Cregan P B. 2003. Single-nucleotide polymorphisms in soybean. Genetics. 163: 1 123–1 134

    CAS  Google Scholar 

  • Zimdahl H, Nyakatura G, Brandt P, Schulz H, Hummel O, Fartmann B, Brett D, Droege M, Monti J, Lee Y A, Sun Y, Zhao S, Winter E E, Ponting C P, Chen Y, Kasprzyk A, Birney E, Ganten D, Hubner N. 2004. A SNP map of the rat genome generated from cDNA sequences. Science. 6: 807

    Article  Google Scholar 

  • Zollner S, Wen X, Pritchard J K. 2005. Association mapping and fine mapping with Tree LD. Bioinformatics. 21: 3 168–3 170

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Zhi-yi.

Additional information

[Supported by the National Natural Science Foundation of China (Grant No. 30471409) and the National “863” Project (Grant No. 2002AA241071)]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Dq., Zhang, Zy. Single nucleotide polymorphisms (SNPs) discovery and linkage disequilibrium (LD) in forest trees. For. Stud. China 7, 1–14 (2005). https://doi.org/10.1007/s11632-005-0024-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11632-005-0024-x

Key words

Navigation