Skip to main content
Log in

Quantitative trait locus mapping for Verticillium wilt resistance in a backcross inbred line population of cotton (Gossypium hirsutum × Gossypium barbadense) based on RGA-AFLP analysis

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Verticillium wilt (VW), caused by Verticillium dahliae Kleb., is one of the most important diseases in cotton. The objective of this study was to map quantitative trait loci (QTLs) conferring VW resistance using resistance gene analog (RGA)-targeted amplified fragment length polymorphism (RGA-AFLP) markers in an interspecific backcross inbred line mapping population, consisting of 146 lines from a susceptible Sure-Grow 747 (Gossypium hirsutum L.) × resistant Pima S-7 (G. barbadense L.) cross. VW resistance was evaluated in replicated tests based on disease incidence in the field, and disease incidence and severity in the greenhouse. Of 160 polymorphic RGA-AFLP markers, 42 were significantly correlated with one or more VW traits and 41 were placed on a linkage map which covered 1,226 cM of the cotton genome and contained 251 other molecular markers. Three QTLs for VW resistance were detected, each of which explained 12.0–18.6 % of the phenotypic variation. Two of these QTLs for disease incidence and severity detected in the greenhouse inoculation tests using root wounding are located on chromosome c4. Both are closely linked to four RGA-AFLP markers and therefore considered as the same QTL for VW resistance. The other QTL detected in the field test was located on c19 and flanked by several RGA-AFLP markers. The desirable QTL allele on c4 for VW resistance detected in the greenhouse was from the VW susceptible Upland parent and absent from the resistant Pima parent which was more VW susceptible due to the disarmament of the first line of defense mechanism due to root wounding during inoculation. The other desirable VW resistance QTL allele, on c19, was from the resistant parent Pima S-7, consistent with the fact that Pima cotton was more resistant to VW when naturally infected in the field. The results should facilitate the development of more sequence specific markers and the transfer of VW resistance from Pima to Upland cotton through marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdelraheem A, Tiwari R, Zhang JF (2012) Genetic analysis and QTL mapping of drought tolerance in cotton under PEG conditions. Proc. Beltwide Cotton Conference, pp 719–728

  • Adams N, Flynn R, Bajaj S, Percy RG, Jones DC, Hughs SE, Zhang JF (2011) Identification of cotton germplasm and molecular markers for drought tolerance. Proc. Beltwide Cotton Conference, p 708

  • Bell AA (1969) Phytoalexin production and Verticillium wilt resistance in cotton. Phytopathology 59:1119–1127

    CAS  Google Scholar 

  • Blasingame D, Patel MV (2011) Cotton disease loss estimate committee report, 2011 Beltwide Cotton Conferences, Atlanta, pp 306–308

  • Blenda A, Fang DD, Rami JM, Garsmeur O, Luo M, Lacape JM (2012) A high density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check. PLoS One 7:e45739

    Article  PubMed  CAS  Google Scholar 

  • Bolek Y, Bell AA, El-Zik KM, Thaxton PM, Magill CW (2005a) Reaction of cotton cultivars and an F2 population to stem inoculation with isolates Verticillium dahliae. J Phytopathol 153:269–273

    Article  Google Scholar 

  • Bolek Y, El-Zik KM, Pepper AE, Bell AA, Magill CW, Thaxton PM, Reddy OUK (2005b) Mapping of Verticillium wilt resistance genes in cotton. Plant Sci 168:1581–1590

    Article  CAS  Google Scholar 

  • Carpenter CW (1914) The Verticillium wilt problem. Phytopathology 4:393

    Google Scholar 

  • Chen XM, Line RF, Leung H (1998) Genome scanning for resistance-gene analogs in rice, barley, and wheat by high-resolution electrophoresis. Theor Appl Genet 97:345–355

    Google Scholar 

  • Eitas TK, Dangl JL (2010) NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Curr Opin Plant Biol 13:472–477

    Article  PubMed  CAS  Google Scholar 

  • El-Zik KM (1985) Integrated control of Verticillium wilt of cotton. Plant Dis 69:1025–1032

    Article  Google Scholar 

  • Feuillet C, Schachermayr G, Keller B (1997) Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J 11:45–52

    Google Scholar 

  • Fradin EF, Thomma BPHJ (2006) Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol 7:71–86

    Article  PubMed  CAS  Google Scholar 

  • Garber R, Houston B (1966) Penetration and development of Verticillium albo-atrum in the cotton plant. Phytopathology 56:1121–1126

    Google Scholar 

  • Guo WZ, Cai CP, Wang CB, Han ZG, Song XL, Wang K, Niu XW, Wang C, Lu KY, Shi B, Zhang TZ (2007) A Microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics 176:527–541

    Article  PubMed  CAS  Google Scholar 

  • Hill MK, Lyon KJ, Lyon BR (1999) Identification of disease response genes expressed in Gossypium hirsutum upon infection with the wilt pathogen Verticillium dahliae. Plant Mol Biol 40:289–296

    Article  PubMed  CAS  Google Scholar 

  • Hinchliffe D, Lu Y, Potenza C, Segupta-Gopalan C, Cantrell RG, Zhang JF (2005) Resistance gene analogue markers are mapped to homeologous chromosomes in cultivated tetraploid cotton. Theor Appl Genet 110:1074–1085

    Article  PubMed  CAS  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lacape JM, Llewellyn D, Jacobs J, Arioli T, Becker D, Calhoun S, Al-Ghazi Y, Liu S, Palai O, Georges S, Giband M, de Assuncao, Barroso PA, Claverie M, Gawryziak G, Jean J, Vialle M, Viot C (2010) Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum × G. barbadense RIL population. BMC Plant Biol 10:132

    Article  PubMed  Google Scholar 

  • Leister D, Ballvora A, Salamini F, Gebhardt C (1996) A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 14:421–429

    Google Scholar 

  • Lüders RR, Galbieri R, Fuzatto MG, Cia E (2008) Inheritance of resistance to Verticillium wilt in cotton. Crop Breed Appl Biotechnol 8:265–270

    Google Scholar 

  • Martin GB (1999) Functional analysis of plant disease resistance genes and their downstream effectors. Curr Opin Plant Biol 2:273–279

    Article  PubMed  CAS  Google Scholar 

  • Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61

    Article  PubMed  CAS  Google Scholar 

  • McCouch S, Cho Y, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T (1997) Report on QTL nomenclature. Rice Genet Newsl 14:11–13

    Google Scholar 

  • Mutlu N, Miklas PN, Coyne DP (2006) Resistance gene analog polymorphism (RGAP) markers co-localize with disease resistance genes and QTL in common bean. Mol Breed 17:127–135

    Article  CAS  Google Scholar 

  • Niu C, Lu Y, Yuan Y, Percy R, Ulloa M, Zhang JF (2011) Mapping resistance gene analogs (RGAs) in cultivated tetraploid cotton using RGA-AFLP analysis. Euphytica 181:65–76

    Article  Google Scholar 

  • Pang M (2008) Transcriptome analysis and development of molecular markers for fiber development. Ph.D. dissertation, New Mexico State University, Las Cruces

  • Pang M, Percy RG, Hughs E, Zhang JF (2009) Promoter anchored amplified polymorphism based on random amplified polymorphic DNA (PAAP-RAPD) in cotton. Euphytica 167:281–291

    Article  CAS  Google Scholar 

  • Pang M, Percy R, Hughs S, Jones D, Zhang JF (2012) Identification of genes that were differentially expressed and associated with fiber yield and quality using cDNA-AFLP and a backcross inbred line population. Mol Breed 30:975–985

    Article  CAS  Google Scholar 

  • Pegg GF, Brady BL (2002) Verticillium wilts. CABI Publishing, Wallingford, pp 1–300

    Book  Google Scholar 

  • Shen KA, Meyers BC, Islam-Faridi MN, Chin DB, Stelly DM, Michelmore RW (1998) Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol Plant Microbe Interact 11:815–823

    Article  PubMed  CAS  Google Scholar 

  • Smith CW, Cothren JT (1999) Cotton: origin, history, technology, and production. Wiley, New York

    Google Scholar 

  • Tan H, Callahan FE, Zhang XD, Karaca M, Saha S, Jenkins JN, Creech RG, Ma DP (2003) Identification of resistance gene analogs in cotton (Gossypium hirsutum L.). Euphytica 134:1–7

    Article  CAS  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  Google Scholar 

  • Tiwari R (2012) Identification of molecular markers and quantitative trait loci for salt tolerance in a backcross inbred line population of cotton. Ph.D. dissertation, New Mexico State University, Las Cruces

  • Tiwari RS, Picchioni G, Steiner RL, Hughs SE, Jones DC, Zhang JF (2013a) Genetic variation in salt tolerance during seed germination in a backcross inbred line population and advanced breeding lines derived from Upland Cotton × Pima cotton. Crop Sci. doi:10.2135/cropsci2013.01.0028

  • Tiwari RS, Picchioni G, Steiner RL, Hughs SE, Jones DC, Zhang JF (2013b) Genetic variation in salt tolerance at the seedling stage in an interspecific backcross inbred line population of cultivated tetraploid cotton. Euphytica. doi:10.1007/s10681-013-0927-x

  • Turcotte EL, Percy RG, Feaster RG (1992) Registration of ‘Pima S-7’ American Pima cotton. Crop Sci 32:1291

    Article  Google Scholar 

  • USDA-NASS (2013) Crop Production 2012 Summary. January 2013. http://usda01.library.cornell.edu/usda/current/CropProdSu/CropProdSu-01-11-2013.pdf. Accessed 17 Mar 2013

  • van Ooijen JW (2006) JoinMap® 4.0, Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V. Wageningen, Netherlands

  • Vos P, Hogers R, Bleeker M, Reijans M, Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wang HM, Lin ZX, Zhang XL, Chen W, Guo XP, Nie YC, Li YH (2008) Mapping and quantitative trait loci analysis of Verticillium wilt resistance genes in cotton. J Integr Plant Biol 50:174–182

    Article  PubMed  Google Scholar 

  • Wendel JF, Cronn RC (2003) Polyplody and the evolutionary history of cotton. Adv Agron 78:139–186

    Article  Google Scholar 

  • Wilhelm S (1955) Longevity of the Verticillium wilt fungus in the laboratory and in the field. Phytopathology 45:180–181

    Google Scholar 

  • Wilhelm S, Sagen JE, Tietz H (1969) Dominance of Sea Island resistant to Verticillium wilt in F1 progenies of Upland × Sea Island cotton crosses. Proc Beltwide Cotton Prod Res Conf pp.31

  • Wilhelm S, Sagen JE, Tietz H (1972) Resistance to Verticillium wilt transferred from Gossypium barbadense to Upland cotton phenotype. Phytopathology 62:798–799

    Article  Google Scholar 

  • Wilhelm S, Sagen JE, Tietz H (1974) Resistance to Verticillium wilt in cotton: sources, techniques of identification, inheritance trends, and resistance potential of multiline cultivars. Phytopathology 64:924–931

    Article  Google Scholar 

  • Yang C, Guo WZ, Li GY, Gao F, Lin SS, Zhang TZ (2008a) QTLs mapping for Verticillium wilt resistance at seedling and maturity stages in Gossypium barbadense L. Plant Sci 174:290–298

    Article  CAS  Google Scholar 

  • Yang J, Hu CC, Hu H, Yu RD, Xia Z, Ye XZ, Zhu J (2008b) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723. (QTLNetwork-2.1 user manual—software for mapping QTL with epistatic and QE interaction effects: www.ibi.zju.edu.cn/software/qtlnetwork)

  • Yu YG, Buss GR, Maroof MA (1996) Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Acad Sci USA 93:11751–11756

    Google Scholar 

  • Yu JW, Yu SX, Liu C, WuW, Fan SL, Song MZ, Lin ZX, Zhang XL, Zhang JF (2007) High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. J Integr Plant Biol 49:716–724

    Article  CAS  Google Scholar 

  • Yu Y, Yuan D, Liang S, Li X, Wang X, Lin Z, Zhang X (2011) Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. BMC Genomics 12:15

    Article  PubMed  CAS  Google Scholar 

  • Yu JW, Yu SX, Fan SL, Song MZ, Zhai HH, Li XL, Zhang JF (2012) Mapping quantitative trait loci for cottonseed oil, protein and gossypol content in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Euphytica 187:191–201

    Article  Google Scholar 

  • Yu JW, Zhang K, Li S, Yu S, Zhai H, Wu M, Li X, Fan S, Song M, Yang D, Li Y, Zhang JF (2013) Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Theor Appl Genet 126:275–287

    Article  PubMed  Google Scholar 

  • Zhang JF, Percy RG (2007) Improving Upland cotton by introducing desirable genes from Pima cotton. World Cotton Res Conf. http://wcrc.confex.com/wcrc/2007/techprogram/P1901.HTM. Accessed 16 Apr 2013

  • Zhang JF, Percy RG (2008) Genetic analysis of yield and fiber quality traits in a backcross inbred line population of cotton. ASA-CSSA-SSSA Ann Meetings, 5–9 Oct 2008, Houston. http://a-c-s.confex.com/crops/2008am/webprogram/Paper42279.html. Accessed 16 Apr 2013

  • Zhang JF, Stewart JM (2000) Economical and rapid method for extracting cotton genomic DNA. J Cotton Sci 4:193–201

    CAS  Google Scholar 

  • Zhang JF, Lu Y, Adragna H, Hughs E (2005) Genetic improvement of New Mexico Acala cotton germplasm and their genetic diversity. Crop Sci 45:2363–2373

    Article  CAS  Google Scholar 

  • Zhang JF, Yuan YL, Niu C, Hinchliffe DJ, Lu YZ, Yu SX, Percy RG, Ulloa M, Cantrell RG (2007) AFLP-RGA markers in comparison with RGA and AFLP in cultivated tetraploid cotton. Crop Sci 47:180–187

    Article  CAS  Google Scholar 

  • Zhang JF, Sanogo S, Flynn R, Baral JB, Bajaj S, Hughs SE, Percy RG (2012) Germplasm evaluation and transfer of Verticillium wilt resistance from Pima (Gossypium barbadense) to Upland cotton (G. hirsutum). Euphytica 187:147–160

    Article  Google Scholar 

Download references

Acknowledgments

The research was in part funded by USDA-ARS, Cotton Incorporated and New Mexico Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfa Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 41 kb)

Electronic supplementary material

Below is the link to the electronic supplementary material.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, H., Zhou, H., Sanogo, S. et al. Quantitative trait locus mapping for Verticillium wilt resistance in a backcross inbred line population of cotton (Gossypium hirsutum × Gossypium barbadense) based on RGA-AFLP analysis. Euphytica 194, 79–91 (2013). https://doi.org/10.1007/s10681-013-0965-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-013-0965-4

Keywords

Navigation