Skip to main content
Log in

Application of comparative genomics in developing markers tightly linked to the Pm-2F gene for powdery mildew resistance in melon (Cucumis melo L.)

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Powdery mildew caused by Podosphaera xanthii is an important disease of melon, and race 2F is the predominant race in most areas of China. Resistance to P. xanthii race 2F in melon K7-1 was controlled by a dominant gene, designated Pm-2F, in a 106-member population of recombinant inbred lines derived from K7-1× susceptible K7-2. Using bulked segregant analysis with molecular markers, we have identified two polymorphic simple sequence repeats (SSR) to determine that Pm-2F is located on linkage group II. Comparative genomic analyses using mapped SSR markers and the cucumber genome sequence showed that the melon chromosomal region carrying Pm-2F is homologous to a 288,223 bp genomic region on cucumber chromosome (chr) 1. The SSR markers on chr 1 of cucumber, SSR02734, SSR02733 and CS27 were found linked with Pm-2F. Comparative mapping showed that two SSR markers (SSR02734 and CMBR8) flanked the Pm-2F locus and two nucleotide binding site-leucine-rich repeat resistance genes were identified in the collinear region of cucumber. A cleaved amplified polymorphic sequence (CAPS) marker was developed from the sequence of resistance genes and it delimits the genomic region carrying Pm-2F to 0.8 cM. The evaluation of 165 melon accessions and 13 race differential lines showed that the newly developed CAPS (CAPS-Dde I) marker can be used as a universal marker for effective marker assisted selection in melon powdery mildew resistance breeding. The putative resistance gene cluster provides a potential target site for further fine mapping and cloning of Pm-2F.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bardin M, Nicot P, Normand P, Lemaire J (1997) Virulence variation and DNA polymorphism in Sphaerotheca fuliginea, causal agent of powdery mildew of cucurbits. Eur J Plant Pathol 103(6):545–554

    Article  CAS  Google Scholar 

  • Bardin M, Carlier J, Nicot P (1999a) Genetic differentiation in the French population of Erysiphe cichoracearum, a causal agent of powdery mildew of cucurbits. Plant Pathol 48(4):531–540

    Article  Google Scholar 

  • Bardin M, Dogimont C, Nicot P, Pitrat M (1999b) Genetic analysis of resistance of melon line PI 124112 to Sphaerotheca fuliginea and Erysiphe cichoracearum, studied in recombinant inbred lines. Acta Hortic 492:163–168

    Google Scholar 

  • Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268(1):78–94

    Article  PubMed  CAS  Google Scholar 

  • Cheng H, Kong W, Su Y, Liu D, He Q (2011) Identification on powdery mildew and physiological race of melon in China. J Changjiang Veg 18:1–5 (in Chinese with English abstract)

    Google Scholar 

  • Cohen R, Burger Y, Shraiber S (2002) Physiological races of Sphaerotheca fuliginea:factors affecting their identification and the significance of this knowledge. Cucurbitaceae 2002:181–187

    Google Scholar 

  • Cohen R, Burger Y, Katzir N (2004) Monitoring physiological races of Podosphaera xanthii (syn. Sphaerotheca fuliginea), the causal agent of powdery mildew in cucurbits: factors affecting race identification and the importance for research and commerce. Phytoparasitica 32(2):174–183

    Article  Google Scholar 

  • Danin-Poleg Y, Reis N, Tzuri G, Katzir N (2001) Development and characterization of microsatellite markers in Cucumis. Theor Appl Genet 102(1):61–72

    Article  CAS  Google Scholar 

  • Del Pino D, Olalla L, Pérez-García A, Rivera ME, García S, Moreno R, De Vicente A, Torés J (2002) Occurrence of races and pathotypes of cucurbit powdery mildew in southeastern Spain. Phytoparasitica 30(5):459–466

    Article  Google Scholar 

  • Dogimont C, Chovelon V, Tual S, Boissot N, Rittener-Rüff V, Giovinazzo N, Bendahmane A, Pitrat M (2008) Molecular diversity at the Vat/Pm-W resistance locus in melon. In: XIII International Congress MPMI 2007, Sorrento, pp 375

  • Fernandez-Silva I, Eduardo I, Blanca J, Esteras C, Pico B, Nuez F, Arus P, Garcia-Mas J, Monforte AJ (2008) Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor Appl Genet 118(1):139–150

    Article  PubMed  CAS  Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323(5919):1357–1360

    Article  PubMed  CAS  Google Scholar 

  • Fukino N, Ohara T, Monforte AJ, Sugiyama M, Sakata Y, Kunihisa M, Matsumoto S (2008) Identification of QTLs for resistance to powdery mildew and SSR markers diagnostic for powdery mildew resistance genes in melon (Cucumis melo L.). Theor Appl Genet 118(1):165–175

    Article  PubMed  CAS  Google Scholar 

  • Gonzalo M, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N, Arus P, Monforte A (2005) Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor Appl Genet 110(5):802–811

    Article  PubMed  CAS  Google Scholar 

  • Hollomon D, Wheeler I, Bélanger R, Bushnell W, Dik A, Carver T (2002) Controlling powdery mildews with chemistry. In: Belanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. The American Phytopathological Society, St.Paul, pp 249–255

    Google Scholar 

  • Hosoya K, Narisawa K, Pitrat M, Ezura H (1999) Race identification in powdery mildew (Sphaerotheca fuliginea) on melon (Cucumis melo) in Japan. Plant Breed 118(3):259–262

    Article  Google Scholar 

  • Hosoya K, Kuzuya M, Murakami T, Kato K, Narisawa K, Ezura H (2000) Impact of resistant melon cultivars on Sphaerotheca fuliginea. Plant Breed 119(3):286–288

    Article  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41(12):1275–1281

    Article  PubMed  CAS  Google Scholar 

  • Jagger I, Scott G (1937) Development of powdery mildew resistant cantaloupe No.45. USDA Circ 441(6):1–5

    Google Scholar 

  • Joobeur T, King JJ, Nolin SJ, Thomas CE, Dean RA (2004) The fusarium wilt resistance locus Fom-2 of melon contains a single resistance gene with complex features. Plant J 39(3):283–297

    Article  PubMed  CAS  Google Scholar 

  • Joobeur T, Gusmini G, Zhang X, Levi A, Xu Y, Wehner T, Oliver M, Dean R (2006) Construction of a watermelon BAC library and identification of SSRs anchored to melon or Arabidopsis genomes. Theor Appl Genet 112(8):1553–1562

    Article  PubMed  CAS  Google Scholar 

  • Kang H, Weng Y, Yang Y, Zhang Z, Zhang S, Mao Z, Cheng G, Gu X, Huang S, Xie B (2011) Fine genetic mapping localizes cucumber scab resistance gene Ccu into an R gene cluster. Theor Appl Genet 122(4):795–803

    Article  PubMed  CAS  Google Scholar 

  • Kong Q, Xiang C, Yu Z (2006) Development of EST-SSRs in Cucumis sativus from sequence database. Mol Ecol Notes 6(4):1234–1236

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323(5919):1360–1363

    Article  PubMed  CAS  Google Scholar 

  • Křístková E, Lebeda A, Sedláková B (2007) Temporal and spatial dynamics of powdery mildew species on cucurbits in the Czech Republic. Acta Hortic 731:337–343

    Google Scholar 

  • Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H, Valentin F, Wallace I, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lebeda A, McGrath MT, Sedláková B (2010) Fungicide resistance in cucurbit powdery mildew fungi. Fungicides InTech, Rijeka, pp 221–246

    Google Scholar 

  • Li D, Cuevas HE, Yang L, Li Y, Garcia-Mas J, Zalapa J, Staub JE, Luan F, Reddy U, He X (2011) Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mapping. BMC Genomics 12(1):396

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Chen Y, Su Z, Zhang H, Zhu W (2010) A sequence-amplified characterized region marker for a single, dominant gene in melon PI 134198 that confers resistance to a unique race of Podosphaera xanthii in China. HortScience 45(9):1407–1410

    Google Scholar 

  • Ma H, Wei Z, Zu Y, Luan F (2011) Physiological races identification of powdery mildew on main cucurbits in Heilongjiang Province during 2009–2010. Acta Phytophylacica Sinica 38(3):287–288

    Google Scholar 

  • McCreight JD (2006) Melon-powdery mildew interactions reveal variation in melon cultigens and Podosphaera xanthii races 1 and 2. J Am Soc Hort Sci 131(1):59–65

    Google Scholar 

  • McCreight JD, Coffey MD, Turini TA, Matheron ME (2005) Field evidence for a new race of powdery mildew on melon. HortScience 40(3):888

    Google Scholar 

  • Mohan M, Nair S, Bhagwat A, Krishna T, Yano M, Bhatia C, Sasaki T (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 3(2):87–103

    Article  CAS  Google Scholar 

  • Murray M, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4326

    Article  PubMed  CAS  Google Scholar 

  • Perchepied L, Bardin M, Dogimont C, Pitrat M (2005) Relationship between loci conferring downy mildew and powdery mildew resistance in melon assessed by quantitative trait loci mapping. Phytopathology 95(5):556–565

    Article  PubMed  CAS  Google Scholar 

  • Perin C, Hagen L, De Conto V, Katzir N, Danin-Poleg Y, Portnoy V, Baudracco-Arnas S, Chadoeuf J, Dogimont C, Pitrat M (2002) A reference map of Cucumis melo based on two recombinant inbred line populations. Theor Appl Genet 104(6):1017–1034

    Article  PubMed  CAS  Google Scholar 

  • Pitrat M (1991) Linkage groups in Cucumis melo L. J Hered 82(5):406–411

    CAS  Google Scholar 

  • Qin B, Cao A, Wang H, Chen T, You FM, Liu Y, Ji J, Liu D, Chen P, Wang X (2011) Collinearity-based marker mining for the fine mapping of Pm6, a powdery mildew resistance gene in wheat. Theor Appl Genet 123:207–218

    Article  PubMed  Google Scholar 

  • Ren Y, Zhang Z, Liu J, Staub JE, Han Y, Cheng Z, Li X, Lu J, Miao H, Kang H (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS ONE 4(6):e5795

    Article  PubMed  Google Scholar 

  • Ritschel P, Lins T, Tristan R, Buso G, Buso J, Ferreira M (2004) Development of microsatellite markers from an enriched genomic library for genetic analysis of melon (Cucumis melo L.). BMC Plant Biol 4(1):9

    Article  PubMed  Google Scholar 

  • Salamov AA, Solovyev VV (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10(4):516–522

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3 Lab edn. Cold Spring Harbor Laboratory Press, Cold Spring

    Google Scholar 

  • Sitterly WR (1978) Powdery mildews of cucurbits. In: Spencer DM (ed) The powdery mildews. Academic Press, London, pp 359–379

    Google Scholar 

  • Teixeira APM, Barreto F, Camargo LEA (2008) An AFLP marker linked to the Pm-1 gene that confers resistance to Podosphaera xanthii race 1 in Cucumis melo. Genet Mol Biol 31(2):547–550

    Article  CAS  Google Scholar 

  • Van Leeuwen H, Garcia-Mas J, Coca M, Puigdoménech P, Monfort A (2005) Analysis of the melon genome in regions encompassing TIR-NBS-LRR resistance genes. Mol Genet Genom 273(3):240–251

    Article  CAS  Google Scholar 

  • Van Ooijen J (2006) JoinMap4. Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V., Wageningen

    Google Scholar 

  • Wang J, Song S, Tang X, Chen G (2005) Genetics and molecular marker of the gene for disease resistance to powdery mildew on Cucumis melo L. Acta Agriculturae Boreali-Sinica 20(1):89–92 (In Chinese with English abstract)

    CAS  Google Scholar 

  • Wang J, Gong G, Guo S, Wang Q, Xu Y (2006) Identification of physiological races of powdery mildew on cucurbits in Beijing. China Veg 8:7–9 (in Chinese with English abstract)

    Google Scholar 

  • Wang X, Li G, Gao X, Xiong L, Wang W, Han R (2011) Powdery mildew resistance gene (Pm-AN) located in a segregation distortion region of melon LGV. Euphytica 180(3):421–428

    Article  Google Scholar 

  • Wheeler BEJ (1969) An introduction to plant diseases. John Wiley and Sons Ltd., London, p 301

    Google Scholar 

  • Yuste-Lisbona FJ, Capel C, Capel J, Lozano R, Gómez-Guillamón M, López-Sesé A, Pitrat M (2008) Conversion of an AFLP fragment into one dCAPS marker linked to powdery mildew resistance in melon. Cucurbitaceae 2008, In: Pitrat M (ed) Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae, INRA, Avignon, 21–24 May, pp 143–148

  • Yuste-Lisbona FJ, Capel C, Gómez-Guillamón ML, Capel J, López-Sesé AI, Lozano R (2011a) Codominant PCR-based markers and candidate genes for powdery mildew resistance in melon (Cucumis melo L.). Theor Appl Genet 122(4):747–758

    Article  PubMed  CAS  Google Scholar 

  • Yuste-Lisbona FJ, Capel C, Sarria E, Torreblanca R, Gómez-Guillamón ML, Capel J, Lozano R, López-Sesé AI (2011b) Genetic linkage map of melon (Cucumis melo L.) and localization of a major QTL for powdery mildew resistance. Mol Breed 27(2):181–192

    Article  Google Scholar 

  • Zhang H, Guan H, Li J, Zhu J, Xie C, Zhou Y, Duan X, Yang T, Sun Q, Liu Z (2010) Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). Theor Appl Genet 121(8):1613–1621

    Article  PubMed  Google Scholar 

  • Zhang B, Wang L, Cui S, Ren L, Yang G, Hui C (2011a) Identification of physiological race of powdery mildew on melon in Jilin. J Jilin Veg 06:100–101 (in Chinese with English abstract)

    Google Scholar 

  • Zhang H, Guo S, Gong G, Ren Y, Davis AR, Xu Y (2011b) Sources of resistance to race 2WF powdery mildew in US watermelon plant introductions. HortSci 46(10):1349–1352

    Google Scholar 

  • Zhao G, Xu Y, Xu Z, Xing Y (2010) A novel SRAP marker of the resistant gene for powdery mildew in melon. Acta Botanica Boreali-Occidentalia Sinica 30(6):1105–1110 (In Chinese with English abstact)

    CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by Grants from the National Natural Science Foundation of China (31071799), the Ministry of Science and Technology of the People’s Republic of China (2010DFB33740,2012AA020103, 2012AA100103 and 2012BAD02B03), the Major Program of Beijing Natural Science Foundation of China (5100001), the Beijing Municipal Science & Technology Commission of China (D111100001311002), the Beijing Municipal Bureau of Finance of China (KJCX201101010), and the Beijing Postdoctoral Research and China Postdoctoral Science Foundations. We thank professor BaiYuling at Wageningen University and Prof. John Snyder at Kentucky University for their critical review of the manuscript, and Wang Huaisong for kindly providing melon accessions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Ren, Y., Guo, S. et al. Application of comparative genomics in developing markers tightly linked to the Pm-2F gene for powdery mildew resistance in melon (Cucumis melo L.). Euphytica 190, 157–168 (2013). https://doi.org/10.1007/s10681-012-0828-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-012-0828-4

Keywords

Navigation