Skip to main content

Advertisement

Log in

Genetic diversity, structure and fruit trait associations in Greek sweet cherry cultivars using microsatellite based (SSR/ISSR) and morpho-physiological markers

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

It is important to couple phenotypic analysis with genetic diversity for germplasm conservation in gene bank collections. The use of molecular markers supports the study of genetic marker-trait associations of biological and agronomic interest on diverse genetic material. In this report, 19 Greek traditional sweet cherry cultivars and two international cultivars, which were used as controls, were grown in Greece and characterized for 17 morpho-physiological traits, 15 simple sequence repeat (SSR) loci and 10 inter simple sequence repeat (ISSR) markers. To our knowledge, this is the first report on molecular genetic diversity studies in sweet cherry in Greece. Principal component analysis (PCA) of nine qualitative and eight quantitative morphological parameters explain over 77.33% of total variability in the first five axes. The SSR markers yielded a combined matching probability ratio (MPR) of 9.569 × e−12. The 15 SSR loci produced a total of 92 alleles. Ten ISSR primers generated 91 bands, with an average of 9.1 bands per primer. Expected heterozygosity (gene diversity) values of 15 SSR loci and 10 ISSR markers averaged at 0.683 and 0.369, respectively. Based on stepwise multiple regression analysis (MRA), SSR alleles were found associated with harvest time and fruit polar diameter. Furthermore, three ISSR markers were correlated with fruit harvest and soluble solids and four ISSR markers were correlated with fruit skin color. Stepwise MRA identified six SSR alleles associated with harvest time with a high correlation (P < 0.001), with linear associations with high F values. Hence, data analyzed by the use of MRA could be useful in marker-assisted breeding programs when no other genetic information is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SSR:

Simple sequence repeat

ISSR:

Inter simple sequence repeat

AFLP:

Amplified fragment length polymorphism

RAPD:

Random amplified polymorphic DNA

MRA:

Multiple regression analysis

MPR:

Matching probability ratio

PCA:

Principal component analysis

PCR:

Polymerase chain reaction

QTL:

Quantitative trait locus

References

  • Affifi AA, Clark V (1984) Computer-aided multivariate analysis. Van Nostrand Reinhold, New York

    Google Scholar 

  • Amurrio JM, Deron AM, Zeven AC (1995) Numerical taxonomy of Iberian pea landraces based on quantitative and qualitative characters. Euphytica 82:195–205

    Article  Google Scholar 

  • Arnau G, Lallemand J, Bourgoin M (2003) Fast and reliable strawberry cultivar identification using inter simple sequence repeat (ISSR) amplification. Euphytica 129:69–79

    Article  CAS  Google Scholar 

  • Baldoni L, Tosti N, Ricciolini C, Belaj A, Arcioni S, Pannelli G, Germana MA, Mulas M, Porceddu A (2006) Genetic structure of wild and cultivated olives in the central Mediterranean basin. Ann Bot 98:935–942

    Article  PubMed  CAS  Google Scholar 

  • Bhatt GM (1970) Multivariate analysis approach to selection of parents for hybridization aiming at yield improvement in self-pollinated crops. Aust J Agric Res 21:1–7

    Article  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Chatterjee SN, Nagaraja GM, Srivastava PP, Naik G (2004) Morphological and molecular variation of Morus laevigata in India. Genetica 121:133–143

    Article  PubMed  CAS  Google Scholar 

  • Clarke JB, Tobutt KR (2003) Development and characterization of polymorphic microsatellites from Prunus avium ‘Napoleon’. Mol Ecol Notes 3:578–580

    Article  CAS  Google Scholar 

  • Clarke JB, Sargent DJ, Boskovic RI, Belaj A, Tobutt KR (2009) A cherry map from the inter-specific cross Prunus avium ‘Napoleon’ × P. nipponica based on microsatellite, gene-specific and isoenzyme markers. Tree Genet Genomes 5:41–51

    Article  Google Scholar 

  • DeNise S, Johnston E, Halverson J, Marshall K, Rosenfeld D, McKenna S, Sharp T, Edwards J (2004) Power of exclusion for parentage verification and probability of match for identity in American kennel club breeds using 17 canine microsatellite markers. Anim Genet 35:14–17

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Tavaud M, Aranzana J, Poizat C, Zanetto A, Arus P, Laigret F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L). Theor Appl Genet 105:127–138

    Article  PubMed  CAS  Google Scholar 

  • Downey SL, Iezzoni AF (2000) Polymorphic DNA markers in black cherry (Prunus serotina) are identified using sequences from sweet cherry, peach, and sour cherry. J Am Soc Hortic Sci 125:76–80

    CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Gerlach HK, Stosser R (1997) Patterns of random amplified polymorphic DNAs for sweet cherry (Prunus avium L.) cultivar identification. J Appl Bot Angew Bot 71:212–218

    Google Scholar 

  • Goulao L, Oliveira CM (2001) Molecular characterisation of cultivars of apple (Malus × domestica Borkh.) using microsatellite (SSR and ISSR) markers. Euphytica 122:81–89

    Article  CAS  Google Scholar 

  • Gulsen O, Roose ML (2001) Lemons: diversity and relationships with selected citrus genotypes as measured with nuclear genome markers. J Am Soc Hortic Sci 126:309–317

    CAS  Google Scholar 

  • Hampl V, Pavlicek A, Flegr J (2001) Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with the freeware program FreeTree: application to trichomonad parasites. Int J Syst Evol Microbiol 51:731–735

    Article  PubMed  CAS  Google Scholar 

  • Hedrick UP (1915) The cherries of New York. J B Lyon, Albany

    Google Scholar 

  • IPGRI (1985) Cherry descriptors. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Joshi SP, Gupta VS, Aggarwal RK, Ranjekar PK, Brar DS (2000) Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat (ISSR) polymorphism in the genus Oryza. Theor Appl Genet 100:1311–1320

    Article  CAS  Google Scholar 

  • Kar PK, Srivastava PP, Awasthi AK, Urs SR (2008) Genetic variability and association of ISSR markers with some biochemical traits in mulberry (Morus spp.) genetic resources available in India. Tree Genet Genomes 4:75–83

    Article  Google Scholar 

  • Koukourojiannis V (1996) Οι τάσεις στην παραγωγή και εμπορία των κερασιών. Γεωργία-Κτηνοτροφία 2:24–31 (Greek)

    Google Scholar 

  • Lewontin RC (1972) The apportionment of human diversity. Evol Biol 6:381–398

    Google Scholar 

  • Maccaferri M, Sanguineti MC, Noli E, Tuberosa R (2005) Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed 15:271–289

    Article  CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Marchese A, Tobutt KR, Raimondo A, Motisi A, Boskovic RI, Clarke J, Caruso T (2007) Morphological characteristics, microsatellite fingerprinting and determination of incompatibility genotypes of Sicilian sweet cherry cultivars. J Hortic Sci Biotechnol 82:41–48

    CAS  Google Scholar 

  • Marinoni D, Akkak A, Bounous G, Edwards KJ, Botta R (2003) Development and characterization of microsatellite markers in Castanea sativa (Mill). Mol Breed 11:127–136

    Article  CAS  Google Scholar 

  • Marshall RE (1954) Cherries and cherry products. In: Economic crops, vol 5. Inter-science, New York

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Li W (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Google Scholar 

  • Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354

    Article  PubMed  CAS  Google Scholar 

  • Pakniyat H, Powell W, Baird E, Handley LL, Robinson D, Scrimgeour CM, Nevo E, Hackett CA, Caligari PDS, Forster BP (1997) AFLP variation in wild barley (Hordeum spontaneum C. Koch) with reference to salt tolerance and associated ecogeography. Genome 40:332–341

    Article  PubMed  CAS  Google Scholar 

  • Parker HG, Kim LV, Sutter NB, Carlson S, Lorentzen TD, Malek TB, Johnson GS, DeFrance HB, Ostrander EA, Kruglyak L (2004) Genetic structure of the purebred domestic dog. Science 304:1160–1164

    Article  PubMed  CAS  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98:107–112

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW (2002) Genetic structure of human populations. Science 298:2381–2385

    Article  PubMed  CAS  Google Scholar 

  • Roy SN, Bargmann RE (1957) Tests of multiple independence and the associated confidence-bounds. North Carolina Institute of Statistics Mimeograph Series No. 175

  • Ruan C (2010) Germplasm-regression-combined marker-trait association identification in plants. Afr J Biotechnol 9:573–580

    Google Scholar 

  • Ruan CJ, Li H, Mopper S (2009) Characterization and identification of ISSR markers associated with resistance to dried-shrink disease in sea buckthorn. Mol Breed 24:255–268

    Article  CAS  Google Scholar 

  • Schueler S, Tusch A, Schuster M, Ziegenhagen B (2003) Characterization of microsatellites in wild and sweet cherry (Prunus avium L)—markers for individual identification and reproductive processes. Genome 46:95–102

    Article  PubMed  CAS  Google Scholar 

  • Struss D, Boritzki M, Karle R, Iezzoni AF (2002) Microsatellite markers differentiate eight Giessen cherry rootstocks. HortScience 37:191–193

    CAS  Google Scholar 

  • Struss D, Ahmad R, Southwick SM, Boritzki M (2003) Analysis of sweet cherry (Prunus avium L.) cultivars using SSR and AFLP markers. J Am Soc Hortic Sci 128:904–909

    CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520

    PubMed  CAS  Google Scholar 

  • UPOV (1976) Guidelines for the conduct of test for distinctness, homogenity and stability of the cherry. International Union for the Protection of New Varieties of Plants, Genova

    Google Scholar 

  • Vaughan SP, Russell K (2004) Characterization of novel microsatellites and development of multiplex PCR for large-scale population studies in wild cherry, Prunus avium. Mol Ecol Notes 4:429–431

    Article  CAS  Google Scholar 

  • Vijayan K, Srivatsava PP, Nair CV, Awasthi AK, Tikader A, Sreenivasa B, Urs SR (2006) Molecular characterization and identification of markers associated with yield traits in mulberry using ISSR markers. Plant Breed 125:298–301

    Article  CAS  Google Scholar 

  • Virk PS, Ford-Lloyd BV, Jackson MT, Pooni HS, Clemeno TP, Newbury HJ (1996) Predicting quantitative variation within rice germplasm using molecular markers. Heredity 76:296–304

    Article  Google Scholar 

  • Webster AD (1996) The taxonomic classification of sweet and sour cherries and a brief history of their cultivation. In: Webster AD, Looney NE (eds) Cherries. Cab International, Wallingford, pp 3–25

    Google Scholar 

  • Wolfe AD (2005) ISSR techniques for evolutionary biology. Mol Evol Prod Biochem Data B 395:134–144

    Article  CAS  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Eugenics 15:323–354

    Google Scholar 

  • Wunsch A, Hormaza JI (2002) Molecular characterisation of sweet cherry (Prunus avium L.) genotypes using peach [Prunus persica (L) Batsch] SSR sequences. Heredity 89:56–63

    Article  PubMed  CAS  Google Scholar 

  • Wunsch A, Hormaza JI (2004) Cloning and characterization of genomic DNA sequences of four self-incompatibility alleles in sweet cherry (Prunus avium L). Theor Appl Genet 108:299–305

    Article  PubMed  CAS  Google Scholar 

  • Yeh FC, Boyle TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot 129:157

    Google Scholar 

Download references

Acknowledgments

Deep thanks are due to Dr. Panagiotis Madesis and Dr. Georgios Merkouropoulos, Institute of Agrobiotechnology, for their suggestions and improvements. We also acknowledged the comments made by anonymous reviewers since the comments critically improved the manuscript. Help with statistical analysis of Mrs. Maria Ganopoulou and Pinelopi Vasiliou is greatly acknowledged. Continuous support of the Institute of Agrobiotechnology/CERTH from the General Secretariat of Research and Technology of Greece is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios S. Tsaftaris.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 79 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganopoulos, I.V., Kazantzis, K., Chatzicharisis, I. et al. Genetic diversity, structure and fruit trait associations in Greek sweet cherry cultivars using microsatellite based (SSR/ISSR) and morpho-physiological markers. Euphytica 181, 237–251 (2011). https://doi.org/10.1007/s10681-011-0416-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0416-z

Keywords

Navigation