Skip to main content
Log in

Combining ability under drought stress relative to SSR diversity in common wheat

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Eight-parental diallel cross and SSR molecular markers were used to determine the combining ability of common wheat lines grown under well-watered (WW) and water-stress (WS) conditions. Analysis of variance of yield indicated highly significant differences among the progenies. General combining ability (GCA) determined most of the differences among the crosses. Specific combing ability (SCA) was also significant but less important. The estimates of GCA effects indicated that one line was the best general combiner for grain yield under drought. Nei’s genetic distance, measured using SSR markers, differed from 0.20 to 0.48 among the eight genotypes. The correlation of Nei’s genetic distance with SCA for grain yield and heterosis ranged from 0.4 to 0.5. These results indicate that the level of SCA and heterosis depends on the level of genetic diversity between the wheat genotypes examined. Microsatellite markers were effective in predicting the mean and the variance of SCA in various cultivars combinations. However, selection of crosses solely on microsatellite data would miss superior combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abul-Nass, A.A., A.A. El-Hosary & M.M. Saker, 1986. Genetical studies in common wheat (Triticum aestivum L.). Egypt J Agron 11: 93–102.

    Google Scholar 

  • Agrama, H.A. & M.R. Tuinstra, 2003. Phylogenetic diversity and relationships among sorghum accessions using SSRs and RAPDs. African J Biotechnol 2: 334–340.

    CAS  Google Scholar 

  • Ajmone Marsan, P., P. Castiglioni, F. Fusari, M. Kuiper & M. Motto, 1998. Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor Appl Genet 96: 219–243.

    Article  Google Scholar 

  • Barbosa-Neto, J.F., M.E. Sorrells & G. Cisar, 1996. Prediction of heterosis in wheat using coefficient of parentage and RFLP-based estimates of genetic relationship. Genome 39: 1142–1149.

    CAS  Google Scholar 

  • Briggle, L.W., 1963. Heterosis in wheat. Crop Sci 3: 407–412.

    Google Scholar 

  • Corbellini, M., M. Perenzin, M. Accerbi, P. Vaccino & B. Borghi, 2002. Genetic diversity in bread wheat, as revealed by coefficient of parentage and molecular markers, and its relationship to inbred performance. Euphytica 123: 273–285.

    Article  CAS  Google Scholar 

  • El-Haddad, M.M., 1975. Genetical analysis of diallel crosses in spring wheat. Egypt J Genet Cytol 4: 174–188.

    Google Scholar 

  • Falconer, D.S., 1989. Introduction to Quantitative Genetics, 3rd edn. Longman, New York.

    Google Scholar 

  • Freeman, G.F., 1919. Heredity of quantitative characters in wheat. Genetics 4: 1–9.

    Google Scholar 

  • Griffing, B., 1956. Concept of general and specific combining ability in relation to diallel crossing systems. Aust J Biol Sci 9: 463–493.

    Google Scholar 

  • Gupta, P.K. & R.K. Varshney, 2000. The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113: 163–185.

    Article  CAS  Google Scholar 

  • Harlan, J.R., 1995. The Living Fields – Our Agricultural Heritage. Cambridge University Press, Cambridge.

    Google Scholar 

  • Husman, S.H., M.J. Ottman, K.L. Johnson & R.J. Wegener, 1999. Durum Response to Soil Water Depletion Levels. University of Arizona College of Agriculture 1999 Forage and Grain Report, http://ag.arizona.edu/pubs/crops/az-1147/.

  • Leonardi, A., C. Damerval, Y. Hebert, A. Gallais & D. de Vienne, 1991. Association of protein amount polymorphic (PAP) among maize lines with performance of their hybrids. Theor Appl Genet 82: 552–560.

    Article  CAS  Google Scholar 

  • Liu, X.C. & J.L. Wu, 1998. SSR heterogenic patterns of parents for marking and predicting heterosis in rice breeding. Mol Breed 4: 263–268.

    Article  Google Scholar 

  • Martin, J.M., L.E. Talbert, S.P. Lanning & N.K. Blake, 1995. Hybrid performance in wheat as related to parental diversity. Crop Sci 35: 104–108.

    Google Scholar 

  • Melchinger, A.E., A. Graner, M. Singh & M.M. Messmer, 1994. Relationships among European barley germplasm. I. Genetic diversity among winter and spring cultivars revealed by RFLPs. Crop Sci 34: 1191–1199.

    Google Scholar 

  • Melchinger, A.E., M. Lee, K.R. Lamkey & W.L. Woodman, 1990. Genetic diversity for restriction fragment length polymorphisms: Relation to estimated genetic effects in maize inbreds. Crop Sci 30: 1033–1040.

    CAS  Google Scholar 

  • Moser, H. & M. Lee, 1994. RFLP variation and genealogical distance multivariate distance, heterosis, and genetic variance in oats. Theor Appl Genet 87: 947–956.

    Article  CAS  Google Scholar 

  • MSTAT-C, 1991. A Software Program for the Design, Management, and Analysis of Agronomic Research Experiments. Michigan State University, East Lansing, USA.

    Google Scholar 

  • Murray, M. & W.F. Thompson, 1980. Rapid isolation of high molecular-weight plant DNA. Nucleic Acids Res 8: 4321–4325.

    CAS  PubMed  Google Scholar 

  • Nanda, G.S, P.S. Virk & K.S. Gill, 1983. Diallel analysis over environments in wheat-plant characters and harvest index. Indian J Genet 43: 21–27.

    Google Scholar 

  • Nei, M., 1972. Genetic distance between populations. Am Nat 106: 283–292.

    Article  Google Scholar 

  • O’Donoughue, L.S., E. Souza, S.D. Tanksley & M.E. Sorrells, 1994. Relationships among North American oat cultivars based on restriction fragment length polymorphisms. Crop Sci 34: 1251–1258.

    Google Scholar 

  • Parentoni, S.N., J.V. Magalhães, C.A.P. Pacheco, M.X. Santos, T. Abadie, E.G. Gama, P.E.O. Guimarães, W.F. Meirelles, M.A. Lopes, M.J.V. Vasconcelos & E. Paiva, 2001. Heterotic groups based on yield-specific combining ability data and phylogenetic relationship determined by RAPD markers for 28 tropical maize open pollinated varieties. Euphytica 121: 197–208.

    Article  CAS  Google Scholar 

  • Perenzin, M., M. Corbellini, M. Accerbi, P. Vaccino & B. Borghi, 1998. Bread wheat: F1 hybrid performance and parental diversity estimates using molecular markers. Euphytica 100: 273–279.

    Article  Google Scholar 

  • Peterson, L., H. Ostergård & H. Giese, 1994. Genetic diversity among wild and cultivated barley as revealed by RFLP. Theor Appl Genet 89: 676–681.

    Google Scholar 

  • Plaschke, J., M.W. Ganal & M.S. Röder, 1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91: 1001–1007.

    Article  CAS  Google Scholar 

  • Prasad, M., R.K. Varshney, A. Kumar, H.S. Balyan, P.C. Sharma, K.J. Edwards, H. Singh, H.S. Dhaliwal, J.K. Roy & P.K. Gupta, 1999. A microsatellite marker associated with QTL for grain protein content on chromosome arm 2DL of bread wheat. Theor Appl Genet 99: 341–345.

    Article  Google Scholar 

  • Röder, M.S., V. Korzun, K. Wedehake, J. Plaschke, M.H. Tixier, P. Leroy & M.W. Ganal, 1998. A microsatellite map of wheat. Genetics 149: 2007–2023.

    PubMed  Google Scholar 

  • Rohlf, F.J., 1993. NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System, Version 1.8. Applied Biostatistics, New York.

    Google Scholar 

  • Sant, V.J., A.G. Patankar, N.D. Sarode, L.B. Mhase, M.N. Sainani, R.B. Deshmukh, P.K. Ranjekar & V.S. Gupta, 1999. Potential of DNA markers in detecting divergence and in analyzing heterosis in Indian elite chickpea cultivars. Theor Appl Genet 98: 1217–1225.

    Article  CAS  Google Scholar 

  • Satter, A., M.H. Chaudhry, K.N. Shah & S.B. Khan, 1992. Combining ability estimates in five wheat varieties. Pakistan J Agric Res 13: 301–305.

    Google Scholar 

  • Sayed, H.I., 1978. Combining ability for yield and its component characters in wheat. In: S. Ramanujam (Ed.), Proceedings of the Fifth International Wheat Genetics Symposium, New Delhi, pp. 626–634.

  • Singh, K.N., 1988. Combining ability in wheat in normal and sodic soil. Indian J Genet Plant Breed 48: 104–106.

    Google Scholar 

  • Smith, O.S., J.S.C. Smith, S.L. Bowen, R.A. Tenborg & S.J. Wall, 1990. Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, heterosis, and RFLPs. Theor Appl Genet 80: 833–840.

    Article  Google Scholar 

  • Stephenson, P., G. Bryan, J. Kirby, A. Collins, K.M. Devos, C. Busso & M.D. Gale, 1998. Fifty new microsatellite loci for the wheat genetic map. Theor Appl Genet 97: 946–949.

    Article  CAS  Google Scholar 

  • Trethowan, R.M., M. van Ginkel & S. Rajaram, 2002. Progress in breeding wheat for yield and adaptation in global drought affected environments. Crop Sci 42: 1441–1446.

    Google Scholar 

  • Uddin, M.N., F.W. Ellison, L. O’Brien & B.D.H. Latter, 1992. Heterosis in F1 hybrids derived from crosses of adapted Australian wheats. Aust J Agric Res 43: 907– 919.

    Article  Google Scholar 

  • Wang, Z.Y., G. Second & S.D. Tanksley, 1992. Polymorphism and phylogenetic relationships among species in the genus Oryza as determined by analysis on nuclear RFLPs. Theor Appl Genet 83: 565–581.

    Article  Google Scholar 

  • Xiao, J., J. Li, L. Yuan, S.R. McCouch & S.D. Tanksley, 1996. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers. Theor Appl Genet 92: 637–643.

    Article  CAS  Google Scholar 

  • Xiong, L.Z., G.P. Yang, C.G. Xu, Q. Zhang & M.A. Saghai Maroof, 1998. Relationships of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross. Mol Breed 4: 129–136.

    Article  CAS  Google Scholar 

  • Zhang, Q., Y.J. Gao, S.H. Yang, R. Ragab, M.A. Saghai Maroof & Z.B. Li, 1994. A diallel analysis of heterosis in elite hybrid rice based on RFLPs and microsatellites. Theor Appl Genet 89: 185–192.

    Article  Google Scholar 

  • Zhang, Q., Y.J. Gao, M.A. Saghai Maroof, S.H. Yang & J.X. Li, 1995. Molecular divergence and hybrid performance in rice. Mol Breed 1: 133–142.

    Article  Google Scholar 

  • Zhao, M.F., X.H. Li, J.B. Yang, G.G. Xu, R.Y. Hu, D.J. Liu & Q. Zhang, 1999. Relationship between molecular marker heterozygosity and hybrid performance an intra- and inter-subspecific crosses of rice. Plant Breed 118: 139–144.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Agrama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Maghraby, M.A., Moussa, M.E., Hana, N.S. et al. Combining ability under drought stress relative to SSR diversity in common wheat. Euphytica 141, 301–308 (2005). https://doi.org/10.1007/s10681-005-8066-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-005-8066-7

Keywords

Navigation