Skip to main content

Advertisement

Log in

Assessing the utilization potential of pumped-out minewater for potability in the water-stressed coal mining region of Jharia, India: a quantitative, qualitative and probabilistic health risk assessment

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Extensive mining operations coupled by a steady rise in local population have rendered the Jharia Coalfield water-stressed with limited access to potable water, risking the outbreak of waterborne diseases from prolonged inaccessibility. A quantitative assessment was done to utilize the pumped-out minewater by harvesting it in mine voids underlying the coalfield, preventing further loss as surface runoff. A total void volume of 13 billion gallons was identified and mapped using Digital Elevation Model—CARTOSAT. Analysis of minewater in the region revealed variations in hydrochemical parameters, indicating heterogeneity in the underlying hydrosystems of the region due to the synergistic influence of geological formations and anthropogenic processes on the region’s water chemistry. Qualitative evaluation of the hydrochemical parameters of minewater using Heavy Metal Pollution Index (HPI) and a novel Integrated Water Quality Index (IWQI) revealed mostly poor minewater quality across the region, barring Shatabdi (IWQI—1.97; HPI—25.30). A comprehensive quantitative and qualitative assessment of utilizing harvested minewater for potability in a water-stressed region while appraising its probabilistic risk to the local populace formed the theme of this study. Monte Carlo simulation-based health risk assessment revealed that children were more prone to non-carcinogenic risk from As and Mn, with hazard index (HI) values reaching up to 5.33 in some locations. The contribution of carcinogenic risk from the trace/heavy metals were in the order Ni > As > Cr > Pb > Cd and exceeded the maximum acceptable level (\({10}^{-6}\)) in majority of the locations, warranting continual monitoring and appropriate treatment to ameliorate health risks.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The data supporting the findings of this study can be made available upon request to the corresponding author.

References

  • Aadhar-UIDAI (Unique Identification Authority of India). (2021). State/UT-wise aadhar saturation report. https://uidai.gov.in/en/StateWiseAge_AadhaarSat_Rep_31122022_Projected-2022-Final.pdf. (Accessed on 11 April 2021).

  • Acharya, B. S., & Kharel, G. (2020). Acid mine drainage from coal mining in the United States–an overview. Journal of Hydrology, 588, 125061.

    Article  CAS  Google Scholar 

  • Ahmad, S., Ahmad, I., Umar, R., & Farooq, S. H. (2022). Spatio-temporal variation and health risk associated with trace element concentrations in groundwater of Mathura city using modified indexing approach. Arabian Journal of Geosciences, 15(3), 1–19.

    Article  Google Scholar 

  • Akhtar, N., Syakir Ishak, M. I., Bhawani, S. A., & Umar, K. (2021). Various natural and anthropogenic factors responsible for water quality degradation: A review. Water, 13(19), 2660.

    Article  CAS  Google Scholar 

  • Al-Hwaiti, M. S., Brumsack, H. J., & Schnetger, B. (2018). Heavy metal contamination and health risk assessment in waste mine water dewatering using phosphate beneficiation processes in Jordan. Environmental Earth Sciences, 77(19), 1–14.

    Article  CAS  Google Scholar 

  • Arkoc, O. (2022). Health risk assessment of toxic elements in groundwater in a major industrial and agricultural basin,(East of Ergene Basin, Turkey). International Journal of Environmental Health Research. https://doi.org/10.1080/09603123.2022.2068510

    Article  PubMed  Google Scholar 

  • Asare, E. A., Klutse, C. K., & Opare-Boafo, M. S. (2022). Assessment of groundwater quality, source distribution of fluoride and nitrate, and associate human health risk in a community in North-Eastern Ghana. Bolgatanga. Chemistry Africa, 5(1), 173–188.

    Article  CAS  Google Scholar 

  • Asare-Donkor, N. K., Boadu, T. A., & Adimado, A. A. (2016). Evaluation of groundwater and surface water quality and human risk assessment for trace metals in human settlements around the Bosomtwe Crater Lake in Ghana. Springerplus, 5(1), 1–19.

    Article  CAS  Google Scholar 

  • Asim, M., & Nageswara Rao, K. (2021). Assessment of heavy metal pollution in Yamuna River, Delhi-NCR, using heavy metal pollution index and GIS. Environmental Monitoring and Assessment, 193(2), 1–16.

    Article  Google Scholar 

  • Association (APHA), A.P.H.A (2017). Standard methods for examination of water and wastewater, 23rd ed. APHA, AWWA, WPCF, Washington

  • Baby, R., Saifullah, B., & Hussein, M. Z. (2019). Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remediation. Nanoscale Research Letters, 14(1), 1–17.

    Article  CAS  Google Scholar 

  • Badham, J., Elsawah, S., Guillaume, J. H., Hamilton, S. H., Hunt, R. J., Jakeman, A. J., & Bammer, G. (2019). Effective modeling for Integrated Water Resource Management: A guide to contextual practices by phases and steps and future opportunities. Environmental Modelling & Software, 116, 40–56.

    Article  Google Scholar 

  • Bandyopadhyay, K., Mallik, J., & Ghosh, T. (2020). Dependence of fluid flow on cleat aperture distribution and aperture–length scaling: A case study from Gondwana coal seams of Raniganj Formation, Eastern India. International Journal of Coal Science & Technology, 7(1), 133–146.

    Article  CAS  Google Scholar 

  • Baruah, P. M., & Singh, G. (2019). Ameliorating water scarcity by augmenting minewater for potable purposes from the coal mines of Jharia Coalfield-a review. Minetech, 40(4), 34–44.

    Google Scholar 

  • Bhardwaj, R., Gupta, A., & Garg, J. K. (2017). Evaluation of heavy metal contamination using environmetrics and indexing approach for River Yamuna, Delhi stretch, India. Water Science, 31, 52–66.

    Article  Google Scholar 

  • Bharti, A. K., Prakash, A., Verma, A., & Singh, K. K. K. (2021). Assessment of hydrological condition in strata associated with old mine working during and post-monsoon using electrical resistivity tomography: A case study. Bulletin of Engineering Geology and the Environment, 80(6), 5159–5166.

    Article  Google Scholar 

  • Bureau of Indian Standards (BIS), BIS: 10500, 2012. Guidelines for drinking water quality standards.

  • Census of India. (2011). Population enumeration data (Final Population). http://www.censusindia.gov.in/2011census/population_enumeration.html. (Accessed on 10 April 2021).

  • Chaturvedi, A., Bhattacharjee, S., Mondal, G. C., Kumar, V., Singh, P. K., & Singh, A. K. (2019). Exploring new correlation between hazard index and heavy metal pollution index in groundwater. Ecological Indicators, 97, 239–246.

    Article  CAS  Google Scholar 

  • Dixit, F., Barbeau, B., Mostafavi, S. G., & Mohseni, M. (2019). PFOA and PFOS removal by ion exchange for water reuse and drinking applications: Role of organic matter characteristics. Environmental Science: Water Research & Technology, 5(10), 1782–1795.

    CAS  Google Scholar 

  • Dong, W., Zhang, Y., & Quan, X. (2020). Health risk assessment of heavy metals and pesticides: a case study in the main drinking water source in Dalian. China. Chemosphere, 242, 125113.

    Article  CAS  PubMed  Google Scholar 

  • Duggal, V., & Rani, A. (2018). Carcinogenic and non-carcinogenic risk assessment of metals in groundwater via ingestion and dermal absorption pathways for children and adults in Malwa Region of Punjab. Journal of the Geological Society of India, 92(2), 187–194.

    Article  CAS  Google Scholar 

  • Duggal, V., Rani, A., Mehra, R., & Balaram, V. (2017). Risk assessment of metals from groundwater in northeast Rajasthan. Journal of the Geological Society of India, 90(1), 77–84.

    Article  CAS  Google Scholar 

  • Enyigwe, M. T., Onwuka, O. S., & Egbueri, J. C. (2022). Geochemical distribution, statistical and health risk assessment of toxic elements in groundwater from a typical mining district in Nigeria. Environmental Forensics, 23, 5–6, 469–481. https://doi.org/10.1080/15275922.2021.1907822

  • Ewusi, A., Sunkari, E. D., Seidu, J., & Coffie-Anum, E. (2022). Hydrogeochemical characteristics, sources and human health risk assessment of heavy metal dispersion in the mine pit water–surface water–groundwater system in the largest manganese mine in Ghana. Environmental Technology & Innovation, 26, 102312.

    Article  CAS  Google Scholar 

  • Fernando, W. A. M., Ilankoon, I. M. S. K., Syed, T. H., & Yellishetty, M. (2018). Challenges and opportunities in the removal of sulphate ions in contaminated mine water: A review. Minerals Engineering, 117, 74–90.

    Article  CAS  Google Scholar 

  • Ghosh, G. C., Khan, M., Hassan, J., Chakraborty, T. K., Zaman, S., Kabir, A. H. M., & Tanaka, H. (2020). Human health risk assessment of elevated and variable iron and manganese intake with arsenic-safe groundwater in Jashore. Bangladesh. Scientific Reports, 10(1), 1–9.

    Google Scholar 

  • Gopinathan, P., Singh, A. K., Singh, P. K., & Jha, M. (2022). Sulphur in Jharia and Raniganj coalfields: Chemical fractionation and its environmental implications. Environmental Research, 204, 112382.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Huang, W., Duan, W., & Chen, Y. (2021). Rapidly declining surface and terrestrial water resources in Central Asia driven by socio-economic and climatic changes. Science of the Total Environment, 784, 147193.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Jiang, C., Zhao, Q., Zheng, L., Chen, X., Li, C., & Ren, M. (2021). Distribution, source and health risk assessment based on the Monte Carlo method of heavy metals in shallow groundwater in an area affected by mining activities. China. Ecotoxicology and Environmental Safety, 224, 112679.

    Article  CAS  PubMed  Google Scholar 

  • Kar, S., Sen, E., & Mukherjee, S. (2020). A geospatial technique-based site suitability analysis for construction of water reservoirs in Arsha and Balarampur Blocks. Purulia. World Water Policy, 6(1), 52–88.

    Article  Google Scholar 

  • Karan, S. K., & Samadder, S. R. (2016). Reduction of spatial distribution of risk factors for transportation of contaminants released by coal mining activities. Journal of Environmental Management, 180, 280–290.

    Article  CAS  PubMed  Google Scholar 

  • Kazemi, A., Esmaeilbeigi, M., Sahebi, Z., & Ansari, A. (2022). Health risk assessment of total chromium in the qanat as historical drinking water supplying system. Science of the Total Environment, 807, 150795.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Khadija, D., Hicham, A., Rida, A., Hicham, E., Nordine, N., & Najlaa, F. (2021). Surface water quality assessment in the semi-arid area by a combination of heavy metal pollution indices and statistical approaches for sustainable management. Environmental Challenges, 5, 100230.

    Article  CAS  Google Scholar 

  • Kinnunen, P., Kyllönen, H., Kaartinen, T., Mäkinen, J., Heikkinen, J., & Miettinen, V. (2018). Sulphate removal from mine water with chemical, biological and membrane technologies. Water Science and Technology, 2017(1), 194–205.

    Article  Google Scholar 

  • Kullar, S. S., Shao, K., Surette, C., Foucher, D., Mergler, D., Cormier, P., & Bouchard, M. F. (2019). A benchmark concentration analysis for manganese in drinking water and IQ deficits in children. Environment International, 130, 104889.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., & Krishna, A. P. (2021). Groundwater quality assessment using geospatial technique-based water quality index (WQI) approach in a coal mining region of India. Arabian Journal of Geosciences, 14(12), 1–26.

    Article  CAS  Google Scholar 

  • Kumar, H., Mishra, M. K., & Mishra, S. (2019). Experimental and numerical evaluation of CBM potential in Jharia Coalfield India. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 5(3), 289–314.

    Article  Google Scholar 

  • Li, P. (2018). Mine water problems and solutions in China. Mine Water and the Environment, 37(2), 217–221.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Liu, L., Liu, Q., Ma, J., Wu, H., Qu, Y., Gong, Y., & Zhou, Y. (2020). Heavy metal (loid) s in the topsoil of urban parks in Beijing, China: Concentrations, potential sources, and risk assessment. Environmental Pollution, 260, 114083.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Lai, D., & Wang, Y. (2019). Performance of Pb (II) removal by an activated carbon supported nanoscale zero-valent iron composite at ultralow iron content. Journal of Hazardous Materials, 361, 37–48.

    Article  CAS  PubMed  Google Scholar 

  • Mahato, M. K., Singh, A. K., Singh, G., & Mishra, L. P. (2017). Impacts of coal mine water and Damodar River water irrigation on soil and maize (Zea mays L.) in a coalfield area of Damodar Valley, India. Archives of Agriculture and Environmental Science, 2(4), 293–297.

    Article  Google Scholar 

  • Mahato, M. K., Singh, P. K., Tiwari, A. K., & Singh, A. K. (2016). Risk assessment due to intake of metals in groundwater of East Bokaro Coalfield, Jharkhand. India. Exposure and Health, 8(2), 265–275.

    Article  CAS  Google Scholar 

  • Mazinder Baruah, P., & Singh, G. (2022). Assessment of potability of minewater pumped out from Jharia Coalfield, India: An integrated approach using integrated water quality index, heavy metal pollution index, and multivariate statistics. Environmental Science and Pollution Research, 29, 27366–27381. https://doi.org/10.1007/s11356-021-17918-0.

  • Mishra, H., Singh, J., Karmakar, S., & Kumar, R. (2021). An integrated approach for modeling uncertainty in human health risk assessment. Environmental Science and Pollution Research, 28(40), 56053–56068.

    Article  PubMed  Google Scholar 

  • Mohammadi, A. A., Zarei, A., Majidi, S., Ghaderpoury, A., Hashempour, Y., Saghi, M. H., Alinejad, A., Yousefi, M., Hosseingholizadeh, N., & Ghaderpoori, M. (2019). Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran. MethodsX, 6, 1642–1651. https://doi.org/10.1016/j.mex.2019.07.017

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohan, S. V., Nithila, P., & Reddy, S. J. (1996). Estimation of heavy metals in drinking water and development of heavy metal pollution index. Journal of Environmental Science & Health Part A, 31, 283–289.

    Google Scholar 

  • Mukate, S., Wagh, V., Panaskar, D., Jacobs, J. A., & Sawant, A. (2019). Development of new integrated water quality index (IWQI) model to evaluate the drinking suitability of water. Ecological Indicators, 101, 348–354.

    Article  CAS  Google Scholar 

  • Neogi, B., Tiwari, A. K., Singh, A. K., & Pathak, D. D. (2018). Evaluation of metal contamination and risk assessment to human health in a coal mine region of India: A case study of the North Karanpura coalfield. Human and Ecological Risk Assessment: An International Journal, 24(8), 2011–2023.

    Article  CAS  Google Scholar 

  • Öztürk, Y., & Ekmekçi, Z. (2020). Removal of sulfate ions from process water by ion exchange resins. Minerals Engineering, 159, 106613.

    Article  Google Scholar 

  • Pal, S. K., Vaish, J., Kumar, S., & Bharti, A. K. (2016). Coal fire mapping of East Basuria Colliery, Jharia coalfield using vertical derivative technique of magnetic data. Journal of Earth System Science, 125(1), 165–178.

    Article  ADS  Google Scholar 

  • Panigrahy, B. P., Singh, P. K., Tiwari, A. K., Kumar, B., & Kumar, A. (2015). Assessment of heavy metal pollution index for groundwater around Jharia coalfield region, India. Journal of Biodiversity and Environmental Sciences, 6(3), 33–39.

    Google Scholar 

  • Pradeepa, S., Srinivasan, J. P., Anandalakshmi, R., Subbulakshmi, P., Vimal, S., & Tarik, A. (2022). FREEDOM: Effective Surveillance and Investigation of Water-borne Diseases from Data-centric Networking Using Machine Learning Techniques. International Journal on Artificial Intelligence Tools. https://doi.org/10.1142/S021821302250004X

    Article  Google Scholar 

  • Prasad, B., Kumari, P., Bano, S., & Kumari, S. (2014). Ground water quality evaluation near mining area and development of heavy metal pollution index. Applied Water Science, 4(1), 11–17.

    Article  ADS  CAS  Google Scholar 

  • Prasad, D., Singh, P. K., Mahato, J. K., & Saw, S. (2022). Hydrogeochemical characterization of groundwater in fire and non-fire zones of Jharia Coal Field, Eastern India, using water quality index (WQI), hierarchical cluster analysis (HCA), and human health risk. Arabian Journal of Geosciences, 15(9), 1–11.

    Article  Google Scholar 

  • Raj, D., Chowdhury, A., & Maiti, S. K. (2017). Ecological risk assessment of mercury and other heavy metals in soils of coal mining area: A case study from the eastern part of a Jharia coal field, India. Human and Ecological Risk Assessment: An International Journal, 23(4), 767–787.

    Article  CAS  Google Scholar 

  • Ray, S., & Dey, K. (2020). Coal mine water drainage: the current status and challenges. Journal of the Institution of Engineers (india): Series D, 101(2), 165–172. https://doi.org/10.1007/s40033-020-00222-5

    Article  ADS  CAS  Google Scholar 

  • Rezaei, H., Zarei, A., Kamarehie, B., Jafari, A., Fakhri, Y., Bidarpoor, F., Karami, M. A., Farhang, M., Ghaderpoori, M., Sadeghi, H., & Shalyari, N. (2019). Levels, distributions and health risk assessment of lead, cadmium and arsenic found in drinking groundwater of Dehgolan’s villages, Iran. Toxicology and Environmental Health Sciences, 11(1), 54–62. https://doi.org/10.1007/s13530-019-0388-2

    Article  Google Scholar 

  • Saha, N., Rahman, M. S., Ahmed, M. B., Zhou, J. L., Ngo, H. H., & Guo, W. (2017). Industrial metal pollution in water and probabilistic assessment of human health risk. Journal of Environmental Management, 185, 70–78.

    Article  CAS  PubMed  Google Scholar 

  • Sahoo, M., Mohapatra, D., & Sahoo, D. (2019). Iron-Ore Mining, Water Quality and Health: An Investigation into their Relationships. Asian Journal of Water, Environment and Pollution, 16(3), 63–71.

    Article  Google Scholar 

  • Seal, K., Chaudhuri, H., Pal, S., Srivastava, R. R., & Soldatova, E. (2022). A study on water pollution scenario of the Damodar river basin, India: assessment of potential health risk using long term database (1980–2019) and statistical analysis. Environmental Science and Pollution Research, 29(35), 53320–53352. https://doi.org/10.1007/s11356-022-19402-9

    Article  CAS  PubMed  Google Scholar 

  • Shams, M., Tavakkoli Nezhad, N., Dehghan, A., Alidadi, H., Paydar, M., Mohammadi, A. A., & Zarei, A. (2022). Heavy metals exposure, carcinogenic and non-carcinogenic human health risks assessment of groundwater around mines in Joghatai. Iran. International Journal of Environmental Analytical Chemistry, 102(8), 1884–1899.

    Article  CAS  Google Scholar 

  • Siddiqui, A. U., Jain, M. K., & Masto, R. E. (2020). Pollution evaluation, spatial distribution, and source apportionment of trace metals around coal mines soil: the case study of eastern India. Environmental Science and Pollution Research, 27(10), 10822–10834. https://doi.org/10.1007/s11356-019-06915-z

    Article  CAS  PubMed  Google Scholar 

  • Singh, A. K., Mahato, M. K., Neogi, B., Tewary, B. K., & Sinha, A. (2012). Environmental geochemistry and quality assessment of mine water of Jharia coalfield. India. Environmental Earth Sciences, 65(1), 49–65.

    Article  ADS  CAS  Google Scholar 

  • Singh, P. K., Panigrahy, B. P., Verma, P., & Kumar, B. (2018a). Evaluation of the surface water quality index of Jharia coal mining region and its management of surface water resources. In V. P. Singh, S. Yadav, & R. N. Yadava (Eds.), Environmental Pollution (pp. 429–437). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-10-5792-2_34

    Chapter  Google Scholar 

  • Singh, U., Singh, A. K., & Singh, D. B. (2018b). Coalbed methane-produced​ water characteristics and insights from the Jharia coalfield in India. Energy Sources, Part a: Recovery, Utilization, and Environmental Effects, 40(16), 1897–1909.

    Article  CAS  Google Scholar 

  • Sinha, S. K., & Gupta, S. D. (2021). A geological model for enhanced coal bed methane (ECBM) recovery process: A case study from the Jharia coalfield region, India. Journal of Petroleum Science and Engineering, 201, 108498.

    Article  CAS  Google Scholar 

  • Tepanosyan, G., Maghakyan, N., Sahakyan, L., & Saghatelyan, A. (2017). Heavy metals pollution levels and children health risk assessment of Yerevan kindergartens soils. Ecotoxicology and Environmental Safety, 142, 257–265.

    Article  CAS  PubMed  Google Scholar 

  • Tianxin, L., Fang, Z., & Linglong, M. (2021). Occurrence, distribution, and prediction of iron and manganese in groundwater of opencast mines: An example from Inner Mongolia. China. Environmental Monitoring and Assessment, 193(8), 1–13.

    Google Scholar 

  • Tiwari, A. K., Singh, P. K., & Mahato, M. K. (2016). Environmental geochemistry and a quality assessment of mine water of the West Bokaro coalfield. India. Mine Water and the Environment, 35(4), 525–535.

    Article  ADS  CAS  Google Scholar 

  • Tiwari, A. K., Singh, P. K., & Mahato, M. K. (2017). Assessment of metal contamination in the mine water of the West Bokaro Coalfield. India. Mine Water and the Environment, 36(4), 532–541.

    Article  ADS  CAS  Google Scholar 

  • Tripathy, D. P. (2010). Determination of trace elements concentration and trace elements index in mine water in some fire and non-fire affected areas of Jharia coalfield, India. Pollution Research, 29, 385–390.

    CAS  Google Scholar 

  • Ungureanu, E. L., Mustatea, G., & Popa, M. E. (2022). Assessment of Potentially Toxic Elements and Associated Health Risk in Bottled Drinking Water for Babies. Applied Sciences, 12(4), 1914.

    Article  CAS  Google Scholar 

  • US EPA (US Environmental Protection Agency). (1991). Risk assessment guidance for superfund, Volume I: Human health evaluation manual (Part B, Development of Risk-Based Preliminary Remediation Goals), http://epaprgs.ornl.gov/radionuclides/HHEMB.pdf. (Accessed 7 May 2022).

  • US EPA (US Environmental Protection Agency). (2004). Baseline human health risk assessment vasquez boulevard and I-70 superfund site. Denver CO. http://www.epa.gov/region8/superfund/sites/VB-170-Risk.pdf. (Accessed 15 May 2022).

  • USDOE (2011). The Risk Assessment Information System (RAIS). U.S. Department of Energy’s Oak Ridge Operations Office (ORO), Washington, DC, USA.

  • Van Rooyen, M., van Staden, P. J., & du Preez, K. A. (2021). Sulphate removal technologies for the treatment of mine-impacted water. Journal of the Southern African Institute of Mining and Metallurgy, 121(10), 523–530.

    Google Scholar 

  • Vandana Shan, S. K., & Singh, A. K. (2020). Water Crisis in the Asian Countries: Status and Future Trends. In M. Kumar, F. Munoz-Arriola, H. Furumai, & T. Chaminda (Eds.), Resilience, Response, and Risk in Water Systems: Shifting Management and Natural Forcings Paradigms (pp. 173–194). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-4668-6_10

    Chapter  Google Scholar 

  • Wang, L., Tao, Y., Su, B., Wang, L., & Liu, P. (2022). Environmental and Health Risks Posed by Heavy Metal Contamination of Groundwater in the Sunan Coal Mine. China. Toxics, 10(7), 390.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Mukherjee, B., & Park, S. K. (2018). Associations of cumulative exposure to heavy metal mixtures with obesity and its comorbidities among US adults in NHANES 2003–2014. Environment International, 121, 683–694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasserman, G. A., Liu, X., Parvez, F., Ahsan, H., Levy, D., Factor-Litvak, P., Kline, J., van Geen, A., Slavkovich, V., LoIacono, N. J., Cheng, Z., Zheng, Y., & Graziano, J. H. (2006). Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environmental Health Perspectives, 114(1), 124–129. https://doi.org/10.1289/ehp.8030

    Article  CAS  PubMed  Google Scholar 

  • WHO, 2011. Guidelines for drinking-water quality. World Health Organization 216, 303–4.

  • Wu, J., Bian, J., Wan, H., Sun, X., & Li, Y. (2021). Probabilistic human health-risk assessment and influencing factors of aromatic hydrocarbon in groundwater near urban industrial complexes in Northeast China. Science of the Total Environment, 800, 149484.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Xu, Y., Yu, C., Zeng, Q., Yao, M., Chen, X., & Zhang, A. (2021). Assessing the potential value of Rosa Roxburghii Tratt in arsenic-induced liver damage based on elemental imbalance and oxidative damage. Environmental Geochemistry and Health, 43(3), 1165–1175.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Q., Li, Z., Lu, X., Duan, Q., Huang, L., & Bi, J. (2018). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the Total Environment, 642, 690–700.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Yuan, Y., Wu, Y., Ge, X., Nie, D., Wang, M., Zhou, H., & Chen, M. (2019). In vitro toxicity evaluation of heavy metals in urban air particulate matter on human lung epithelial cells. Science of the Total Environment, 678, 301–308.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhang, Y., Xu, B., Guo, Z., Han, J., Li, H., Jin, L., & Xiong, Y. (2019). Human health risk assessment of groundwater arsenic contamination in Jinghui irrigation district, China. Journal of Environmental Management, 237, 163–169.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Indian Institute Technology (Indian School of Mines) Dhanbad for providing all the necessary laboratory facilities during the research work.

Funding

The authors did not receive any fundings for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritam Mazinder Baruah.

Ethics declarations

Conflict of interests

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Consent for publication

Not applicable.

Consent to participate

Not applicable.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 416 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazinder Baruah, P., Singh, G. Assessing the utilization potential of pumped-out minewater for potability in the water-stressed coal mining region of Jharia, India: a quantitative, qualitative and probabilistic health risk assessment. Environ Dev Sustain 26, 6517–6542 (2024). https://doi.org/10.1007/s10668-023-02973-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-023-02973-z

Keywords

Navigation