Skip to main content

Advertisement

Log in

Retrieving vegetation biophysical parameters and GPP using satellite-driven LUE model in a National Park

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The terrestrial biosphere plays an active role in governing the climate system by regulating carbon exchange between the land and the atmosphere. Analysis of vegetation biophysical parameters and gross primary production (GPP) makes it convenient to monitor vegetation's health. A light use efficiency (LUE) model was employed to estimate daily GPP from satellite-driven data and environmental factors. The LUE model is driven by four major variables, namely normalized difference vegetation index (NDVI), photosynthetically active radiation (PAR), air temperature, and moisture for which both satellite-based and ERA5-Land data were applied. In this study, the vegetation health of Dibru Saikhowa National Park (DSNP) in Assam has been analyzed through vegetation biophysical and biochemical parameters (i.e., NDVI, EVI, LAI, and chlorophyll content) using Sentinel-2 data. Leaf area index (LAI) varied between 1 and 5.2, with healthy forests depicted LAI more than 2.5. Daily GPP was estimated for January (winter) and August (monsoon) 2019 for tropical evergreen and deciduous forest types. A comparative analysis of GPP for two seasons has been performed. In January, GPP was found to be 3.6 gC m−2 day−1, while in August, GPP was 5 gC m−2 day−1. The outcome of this study may be constructive to forest planners to manage the National Park so that net carbon sink may be attained in DSNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DSNP:

Dibru Saikhowa National Park

LUE:

Light use efficiency

GPP:

Gross primary production

NEE:

Net ecosystem exchange (NEE)

NDVI:

Normalized difference vegetation index

EVI:

Enhanced vegetation index

PAR:

Photosynthetically active radiation

APAR:

Absorbed PAR

LAI:

Leaf area index

fPAR:

Fraction of absorbed PAR

LCC:

Leaf chlorophyll content

CCC:

Canopy chlorophyll content

NAVI:

Normalized area vegetation index (NAVI)

LSWI:

Land surface water index

REDD+:

Reducing emissions from deforestation and forest degradation

References

  • Ahmad, S., Chandra Pandey, A., Kumar, A., Parida, B. R., Lele, N. V., & Bhattacharya, B. K. (2020). Chlorophyll deficiency (chlorosis) detection based on spectral shift and yellowness index using hyperspectral AVIRIS-NG data in Sholayar reserve forest, Kerala. Remote Sensing Applications: Society and Environment, 19, 100369. https://doi.org/10.1016/j.rsase.2020.100369

    Article  Google Scholar 

  • Ahongshangbam, J., Patel, N. R., Kushwaha, S. P. S., Watham, T., & Dadhwal, V. K. (2016). Estimating gross primary production of a forest plantation area using eddy covariance data and satellite imagery. Journal of the Indian Society of Remote Sensing, 44(6), 895–904. https://doi.org/10.1007/s12524-016-0564-7

    Article  Google Scholar 

  • Atzberger, C., & Richter, K. (2012). Spatially constrained inversion of radiative transfer models for improved LAI mapping from future Sentinel-2 imagery. Remote Sensing of Environment, 120, 208–218. https://doi.org/10.1016/j.rse.2011.10.035

    Article  Google Scholar 

  • Baldocchi, D. D. (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biology, 9(4), 479–492. https://doi.org/10.1046/j.1365-2486.2003.00629.x

    Article  Google Scholar 

  • Bar, S., Parida, B. R., & Pandey, A. C. (2020). Landsat-8 and Sentinel-2 based Forest fire burn area mapping using machine learning algorithms on GEE cloud platform over Uttarakhand, Western Himalaya. Remote Sensing Applications: Society and Environment, 18, 100324. https://doi.org/10.1016/j.rsase.2020.100324

    Article  Google Scholar 

  • Bar, S., Parida, B. R., Roberts, G., Pandey, A. C., Acharya, P., & Dash, J. (2021). Spatio-temporal characterization of landscape fire in relation to anthropogenic activity and climatic variability over the Western Himalaya, India. Giscience & Remote Sensing. https://doi.org/10.1080/15481603.2021.1879495

    Article  Google Scholar 

  • Boisvenue, C., & Running, S. W. (2006). Impacts of climate change on natural forest productivity—Evidence since the middle of the 20th century. Global Change Biology, 12(5), 862–882. https://doi.org/10.1111/j.1365-2486.2006.01134.x

    Article  Google Scholar 

  • Boles, S. H., Xiao, X., Liu, J., Zhang, Q., Munkhtuya, S., Chen, S., & Ojima, D. (2004). Land cover characterization of Temperate East Asia using multi-temporal VEGETATION sensor data. Remote Sensing of Environment, 90(4), 477–489. https://doi.org/10.1016/j.rse.2004.01.016

    Article  Google Scholar 

  • Brown, L. A., Ogutu, B. O., & Dash, J. (2019). Estimating forest leaf area index and canopy chlorophyll content with Sentinel-2: An evaluation of two hybrid retrieval algorithms. Remote Sensing, 11(15). https://doi.org/10.3390/rs11151752

  • Buermann, W., Beaulieu, C., Parida, B. R., Medvigy, D., Collatz, G. J., Sheffield, J., & Sarmiento, J. L. (2016). Climate-driven shifts in continental net primary production implicated as a driver of a recent abrupt increase in the land carbon sink. Biogeosciences, 13(5), 1597–1607. https://doi.org/10.5194/bg-13-1597-2016

    Article  CAS  Google Scholar 

  • Cheng, Q., & Wu, X. (2007). Correlation analysis of simulated MODIS vegetation indices and the red edge and rice agricultural parameter. In C. M. U. Neale, M. Owe, & G. D’Urso (Eds.), (p. 67420U). Presented at the Remote Sensing, Florence, Italy. https://doi.org/10.1117/12.731214

  • Chiwara, P., Ogutu, B. O., Dash, J., Milton, E. J., Ardö, J., Saunders, M., & Nicolini, G. (2018). Estimating terrestrial gross primary productivity in water limited ecosystems across Africa using the Southampton Carbon Flux (SCARF) model. Science of the Total Environment, 630, 1472–1483. https://doi.org/10.1016/j.scitotenv.2018.02.314

    Article  CAS  Google Scholar 

  • Choudhury, A. (2006). Birds of Dibru-Saikhowa National Park and Biosphere Reserve, Assam, India. Indian Birds, 2, 95–105.

    Google Scholar 

  • Choudhury, B. J., Ahmed, N. U., Idso, S. B., Reginato, R. J., & Daughtry, C. S. T. (1994). Relations between evaporation coefficients and vegetation indices studied by model simulations. Remote Sensing of Environment, 50(1), 1–17. https://doi.org/10.1016/0034-4257(94)90090-6

    Article  Google Scholar 

  • Darvishzadeh, R., Skidmore, A., Schlerf, M., & Atzberger, C. (2008). Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sensing of Environment, 112(5), 2592–2604. https://doi.org/10.1016/j.rse.2007.12.003

    Article  Google Scholar 

  • Das, D. (2014). ‘Majuli in Peril’: Challenging the received wisdom on flood control in Brahmaputra River Basin, Assam (1940–2000). Water History, 6(2), 167–185. https://doi.org/10.1007/s12685-014-0098-2

    Article  Google Scholar 

  • Deb Burman, P. K., Launiainen, S., Mukherjee, S., Chakraborty, S., Gogoi, N., Murkute, C., et al. (2021). Ecosystem-atmosphere carbon and water exchanges of subtropical evergreen and deciduous forests in India. Forest Ecology and Management, 495, 119371. https://doi.org/10.1016/j.foreco.2021.119371

  • Deb Burman, P. K., Sarma, D., Chakraborty, S., Karipot, A., & Jain, A. K. (2020). The effect of Indian summer monsoon on the seasonal variation of carbon sequestration by a forest ecosystem over North-East India. SN Applied Sciences, 2(2), 154. https://doi.org/10.1007/s42452-019-1934-x

    Article  CAS  Google Scholar 

  • Dong, J., Xiao, X., Wagle, P., Zhang, G., Zhou, Y., Jin, C., et al. (2015). Comparison of four EVI-based models for estimating gross primary production of maize and soybean croplands and tallgrass prairie under severe drought. Remote Sensing of Environment, 162, 154–168. https://doi.org/10.1016/j.rse.2015.02.022

  • Féret, J. B., Gitelson, A. A., Noble, S. D., & Jacquemoud, S. (2017). PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle. Remote Sensing of Environment, 193, 204–215. https://doi.org/10.1016/j.rse.2017.03.004

    Article  Google Scholar 

  • Field, C. B. (1991). Ecological scaling of carbon gain to stress and resource availability. In H. A. Mooney, S. E. Winner, & E. J. Pell (Eds.), Integrated responses of plants to stress (pp. 35–65). Academic Press.

  • Frampton, W. J., Dash, J., Watmough, G., & Milton, E. J. (2013). Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 82, 83–92. https://doi.org/10.1016/j.isprsjprs.2013.04.007

    Article  Google Scholar 

  • Ghosh, S. M., Behera, M. D., & Paramanik, S. (2020). Canopy height estimation using sentinel series images through machine learning models in a mangrove forest. Remote Sensing, 12(9), 1519. https://doi.org/10.3390/rs12091519

    Article  Google Scholar 

  • Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160(3), 271–282. https://doi.org/10.1078/0176-1617-00887

    Article  CAS  Google Scholar 

  • Gitelson, A. A., Peng, Y., Viña, A., Arkebauer, T., & Schepers, J. S. (2016). Efficiency of chlorophyll in gross primary productivity: A proof of concept and application in crops. Journal of Plant Physiology, 201, 101–110. https://doi.org/10.1016/j.jplph.2016.05.019

    Article  CAS  Google Scholar 

  • Gitelson, A. A., Viña, A., Ciganda, V., Rundquist, D. C., & Arkebauer, T. J. (2005). Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 32(8), 1–4. https://doi.org/10.1029/2005GL022688

    Article  CAS  Google Scholar 

  • Gogoi, K., Borah, R. L., & Sharma, G. C. (2010). Orchid flora of Dibru-Saikhowa National Park and Biosphere Reserve, Assam, India. Pleione, 4(1), 124–134.

    Google Scholar 

  • He, M., Kimball, J. S., Maneta, M. P., Maxwell, B. D., Moreno, A., Beguería, S., & Wu, X. (2018). Regional crop gross primary productivity and yield estimation using fused landsat-MODIS data. Remote Sensing, 10(3). https://doi.org/10.3390/rs10030372

  • Houlès, V., Guérif, M., & Mary, B. (2007). Elaboration of a nitrogen nutrition indicator for winter wheat based on leaf area index and chlorophyll content for making nitrogen recommendations. European Journal of Agronomy, 27(1), 1–11. https://doi.org/10.1016/j.eja.2006.10.001

    Article  CAS  Google Scholar 

  • Jenkins, J. P., Richardson, A. D., Braswell, B. H., Ollinger, S. V., Hollinger, D. Y., & Smith, M. L. (2007). Refining light-use efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and radiometric measurements. Agricultural and Forest Meteorology, 143(1–2), 64–79. https://doi.org/10.1016/j.agrformet.2006.11.008

    Article  Google Scholar 

  • Joshi, R. K. (2020). Tree species diversity and biomass carbon assessment in undisturbed and disturbed tropical forests of Dibru-Saikhowa biosphere reserve in Assam North-East India. Vegetos, 33(3), 516–537. https://doi.org/10.1007/s42535-020-00135-4

    Article  Google Scholar 

  • Kira, O., Nguy-Robertson, A. L., Arkebauer, T. J., Linker, R., & Gitelson, A. A. (2016). Informative spectral bands for remote green LAI estimation in C3 and C4 crops. Agricultural and Forest Meteorology, 218–219, 243–249. https://doi.org/10.1016/j.agrformet.2015.12.064

    Article  Google Scholar 

  • Kross, A., McNairn, H., Lapen, D., Sunohara, M., & Champagne, C. (2015). Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. International Journal of Applied Earth Observation and Geoinformation, 34(1), 235–248. https://doi.org/10.1016/j.jag.2014.08.002

    Article  Google Scholar 

  • Kumar, S., & Parida, B. R. (2021). Hydroponic farming hotspot analysis using the Getis-Ord Gi* statistic and high-resolution satellite data of Majuli Island, India. Remote Sensing Letters, 12(4), 408–418. https://doi.org/10.1080/2150704X.2021.1895446

    Article  Google Scholar 

  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148(C), 350–382. https://doi.org/10.1016/0076-6879(87)48036-1

  • Liu, D., Cai, W., Xia, J., Dong, W., Zhou, G., Chen, Y., Zhang, H., Yuan, W. (2014). Global validation of a process-based model on vegetation Gross Primary Production using eddy covariance observations. PLoS ONE, 9(11). https://doi.org/10.1371/journal.pone.0110407

  • Madani, N., & Parazoo, N. C. (2020). Vegetation collection global monthly GPP from an improved light use efficiency model, 1982–2016. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1789

  • Mahadevan, P., Wofsy, S. C., Matross, D. M., Xiao, X., Dunn, A. L., Lin, J. C., Gerbig, C., Munger, J. W., Chow, V. Y., Gottlieb, E. W. (2008). A satellite-based biosphere parameterization for net ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration Model (VPRM). Global Biogeochemical Cycles, 22(2), 1–17. https://doi.org/10.1029/2006GB002735

  • Monteith, J. L. (1972). Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 9, 747–766.

    Article  Google Scholar 

  • Monteith, J. L. (1977). Climate and efficiency of crop production in Britain. Philosophical Transactions of the Royal Society b: Biological Sciences, 281, 277–294.

    Google Scholar 

  • Myneni, R. B., & Williams, D. L. (1994). On the relationship between FAPAR and NDVI. Remote Sensing of Environment, 49(3), 200–211. https://doi.org/10.1016/0034-4257(94)90016-7

    Article  Google Scholar 

  • Nichol, C. J., Lloyd, J., Shibistova, O., Arneth, A., Röser, C., Knohl, A., et al. (2002). Remote sensing of photosynthetic-light-use efficiency of a Siberian boreal forest. Tellus b: Chemical and Physical Meteorology, 54(5), 677–687. https://doi.org/10.3402/tellusb.v54i5.16710

  • Pan, S., Tian, H., Dangal, S. R. S., Ouyang, Z., Tao, B., Ren, W., et al. (2014). Modeling and monitoring terrestrial primary production in a changing global environment: Toward a multiscale synthesis of observation and simulation. Advances in Meteorology. https://doi.org/10.1155/2014/965936

  • Parida, B. R., & Kumari, A. (2020). Mapping and modeling mangrove biophysical and biochemical parameters using Sentinel-2A satellite data in Bhitarkanika National Park, Odisha. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-020-01005-3

  • Parida, B. R., Kushwaha, A., & Ranjan, A. K. (2021). Synergy of Sentinel-2A and Near-proximal sensor data for deriving biochemical parameters of paddy at different growth stages. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-021-01482-1

    Article  Google Scholar 

  • Parida, B. R., Pandey, A. C., & Patel, N. R. (2020). Greening and browning trends of vegetation in india and their responses to climatic and non-climatic drivers. Climate, 8(8), 92. https://doi.org/10.3390/cli8080092

    Article  Google Scholar 

  • Raich, J. W. (1991). Potential net primary productivity in South America: Application of a global model. Ecological Applications, 1(4), 399–429. https://doi.org/10.2307/1941899

    Article  CAS  Google Scholar 

  • Ranjan, A. K., & Parida, B. R. (2020a). Estimating biochemical parameters of paddy using satellite and near-proximal sensor data in Sahibganj Province, Jharkhand (India). Remote Sensing Applications: Society and Environment, 18, 100293. https://doi.org/10.1016/j.rsase.2020.100293

    Article  Google Scholar 

  • Ranjan, A. K., & Parida, B. R. (2020b). Predicting paddy yield at spatial scale using optical and Synthetic Aperture Radar (SAR) based satellite data in conjunction with field-based Crop Cutting Experiment (CCE) data. International Journal of Remote Sensing, 42(6), 2046–2071. https://doi.org/10.1080/01431161.2020.1851063

    Article  Google Scholar 

  • Rivera, J., Verrelst, J., Leonenko, G., & Moreno, J. (2013). Multiple cost functions and regularization options for improved retrieval of leaf chlorophyll content and LAI through inversion of the PROSAIL model. Remote Sensing, 5(7), 3280–3304. https://doi.org/10.3390/rs5073280

    Article  Google Scholar 

  • Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., & Hashimoto, H. (2004). A continuous satellite-derived measure of global terrestrial primary production. BioScience, 54(6), 547–560. https://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2

    Article  Google Scholar 

  • Sellers, P. J., Los, S. O., Tucker, C. J., Justice, C. O., Dazlich, D. A., Collatz, G. J., & Randall, D. A. (1996). A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. Journal of Climate, 9, 706–737.

    Article  Google Scholar 

  • Sims, D. A., Rahman, A. F., Cordova, V. D., Baldocchi, D. D., Flanagan, L. B., Goldstein, A. H., et al. (2005). Midday values of gross CO2 flux and light use efficiency during satellite overpasses can be used to directly estimate eight-day mean flux. Agricultural and Forest Meteorology, 131(1–2), 1–12. https://doi.org/10.1016/j.agrformet.2005.04.006

  • Singh, N., & Parida, B. R. (2019). Environmental factors associated with seasonal variations of night-time plant canopy and soil respiration fluxes in deciduous conifer forest, Western Himalaya, India. Trees, 33(2), 599–613. https://doi.org/10.1007/s00468-018-1804-y

    Article  CAS  Google Scholar 

  • Singh, N., Parida, B. R., Charakborty, J. S., & Patel, N. R. (2019). Net ecosystem exchange of CO2 in deciduous pine forest of lower Western Himalaya, India. Resources, 8(2), 98. https://doi.org/10.3390/resources8020098

    Article  Google Scholar 

  • Singh, N., Patel, N. R., Bhattacharya, B. K., Soni, P., Parida, B. R., & Parihar, J. S. (2014). Analyzing the dynamics and inter-linkages of carbon and water fluxes in subtropical pine (Pinus roxburghii) ecosystem. Agricultural and Forest Meteorology, 197, 206–218. https://doi.org/10.1016/j.agrformet.2014.07.004

    Article  Google Scholar 

  • Sun, Z., Wang, X., Zhang, X., Tani, H., Guo, E., Yin, S., & Zhang, T. (2019). Evaluating and comparing remote sensing terrestrial GPP models for their response to climate variability and CO2 trends. Science of the Total Environment, 668, 696–713. https://doi.org/10.1016/j.scitotenv.2019.03.025

    Article  CAS  Google Scholar 

  • Turner, D. P., Urbanski, S., Bremer, D., Wofsy, S. C., Meyers, T., Gower, S. T., & Gregory, M. (2003). A cross-biome comparison of daily light use efficiency for gross primary production: GPP LIGHT USE EFFICIENCY. Global Change Biology, 9(3), 383–395. https://doi.org/10.1046/j.1365-2486.2003.00573.x

    Article  Google Scholar 

  • Verrelst, J., Rivera, J. P., Leonenko, G., Alonso, L., & Moreno, J. (2014). Optimizing LUT-based RTM inversion for semiautomatic mapping of crop biophysical parameters from sentinel-2 and -3 data: Role of cost functions. IEEE Transactions on Geoscience and Remote Sensing, 52(1), 257–269. https://doi.org/10.1109/TGRS.2013.2238242

    Article  Google Scholar 

  • Verrelst, J., Schaepman, M. E., Malenovský, Z., & Clevers, J. G. P. W. (2010). Effects of woody elements on simulated canopy reflectance: Implications for forest chlorophyll content retrieval. Remote Sensing of Environment, 114(3), 647–656. https://doi.org/10.1016/j.rse.2009.11.004

    Article  Google Scholar 

  • Wang, Y., Bonynge, G., Nugranad, J., Traber, M., Ngusaru, A., Tobey, J., et al. (2003). Remote sensing of Mangrove change along the Tanzania coast. Marine Geodesy, 26(1–2), 35–48. https://doi.org/10.1080/01490410306708

  • Watham, T., Patel, N. R., Kushwaha, S. P. S., Dadhwal, V. K., & Senthil Kumar, A. (2017). Evaluation of remote-sensing-based models of gross primary productivity over Indian sal forest using flux tower and MODIS satellite data. International Journal of Remote Sensing, 38(18), 5069–5090. https://doi.org/10.1080/01431161.2017.1333653

    Article  Google Scholar 

  • Weiss, A., & Norman, J. M. (1985). Partitioning solar radiation into direct and diffuse, visible and near-infrared components. Agricultural and Forest Meteorology, 34(2–3), 205–213. https://doi.org/10.1016/0168-1923(85)90020-6

    Article  Google Scholar 

  • Whittaker, R. H., & Marks, P. L. (1975). Methods of assessing terrestrial productivity, 55–118. https://doi.org/10.1007/978-3-642-80913-2_4

  • Xiao, X., Zhang, Q., Braswell, B., Urbanski, S., Boles, S., Wofsy, S., et al. (2004). Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sensing of Environment, 91(2), 256–270. https://doi.org/10.1016/j.rse.2004.03.010

  • Xie, Q., Dash, J., Huete, A., Jiang, A., Yin, G., Ding, Y., et al. (2019). Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery. International Journal of Applied Earth Observation and Geoinformation, 80, 187–195. https://doi.org/10.1016/j.jag.2019.04.019

  • Yuan, W., Liu, S., Yu, G., Bonnefond, J. M., Chen, J., Davis, K., et al. (2010). Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sensing of Environment, 114(7), 1416–1431. https://doi.org/10.1016/j.rse.2010.01.022

  • Yuan, W., Liu, S., Zhou, G., Zhou, G., Tieszen, L. L., Baldocchi, D., et al. (2007). Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agricultural and Forest Meteorology, 143(3–4), 189–207. https://doi.org/10.1016/j.agrformet.2006.12.001

  • Zeng, J., Matsunaga, T., Tan, Z.-H., Saigusa, N., Shirai, T., Tang, Y., et al. (2020). Global terrestrial carbon fluxes of 1999–2019 estimated by upscaling eddy covariance data with a random forest. Scientific Data, 7(1), 313. https://doi.org/10.1038/s41597-020-00653-5

  • Zhang, Q., Xiao, X., Braswell, B., Linder, E., Baret, F., & Mooreiii, B. (2005). Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model. Remote Sensing of Environment, 99(3), 357–371. https://doi.org/10.1016/j.rse.2005.09.009

    Article  Google Scholar 

Download references

Acknowledgements

Authors thanks to USGS and Copernicus for providing the high-resolution Sentinel-2 satellite data.

Funding

This research was supported by the Science and Engineering Research Board (SERB, DST), project Grant No. YSS/2015/000801.

Author information

Authors and Affiliations

Authors

Contributions

M.M. and B.R.P. contributed to conceptualization, methodology, software, analysis, visualization, writing—original draft, review, and editing. S.G. contributed to software, visualization, writing—original draft, review, and editing.

Corresponding author

Correspondence to Bikash Ranjan Parida.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marandi, M., Parida, B.R. & Ghosh, S. Retrieving vegetation biophysical parameters and GPP using satellite-driven LUE model in a National Park. Environ Dev Sustain 24, 9118–9138 (2022). https://doi.org/10.1007/s10668-021-01815-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01815-0

Keywords

Navigation