Skip to main content

Advertisement

Log in

Estimating Gross Primary Production of a Forest Plantation Area Using Eddy Covariance Data and Satellite Imagery

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Gross primary production (GPP) is the basic biophysical parameter of an ecosystem. The quantification of GPP has been a major challenge in understanding the global carbon cycle. Eddy covariance (EC) measurements at flux tower provide valuable direct information on seasonal dynamics of GPP and allow model optimization. In this paper, the GPP of forest plantation was estimated using light use efficiency (LUE-based) model and validated with flux tower GPP observations in Terai Central Forest Division, Nainital, India. The LUE model is mainly based upon the photosynthetically active radiation (PAR), satellite-derived normalized difference vegetation index (NDVI), land surface wetness index (LSWI), and the air temperature. The simulation of the model was carried out using vegetation indices generated from Landsat imagery and the meteorological data from flux tower. The predicted GPP showed distinct significance of spatio-temporal dynamics of GPP. The environmental variables, viz., PAR and NDVI showed distinct effect on the GPP prediction. Comparison between predicted and the measured GPP on flux tower site showed good agreement (R 2 = 0.626, RMSE = 2.08 and MAPE = 18.46). The study demonstrated the potential of LUE model for estimating GPP and scaling up of GPP over large areas, which is a major parameter in the study of the carbon cycle on regional to global scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barford, C. C., Wofsy, S. C., Goulden, M. L., Munger, J. W., Hammond, P. E., & Urbanski, S. P. (2001). Factors controlling long-and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science, 294, 1688–1691.

    Article  Google Scholar 

  • Canadell, J. G., Mooney, H. A., Baldocchi, D. D., Berry, J. A., Ehleringer, B., Field, C. B., Gower, S. T., Hollinger, D. Y., Hunt, J. E., Jackson, R. B., Running, S. W., Shaver, G. R., Steffen, W., Trumbore, S. E., Valentini, R., & Bond, B. Y. (2000). Carbon metabolism of the terrestrial biosphere: a multi-technique approach for improved understanding. Ecosystems, 3, 115–130.

    Article  Google Scholar 

  • Churkina, G., Tenhunen, J., Thornton, P., Falge, E., Elbers, J. A., Erhard, M., Grunwald, T., Kowalski, A., Rannik, U., & Sprinz, D. (2003). Analyzing the ecosystem carbon dynamics of four European coniferous forest using a biogeochemistry model. Ecosystems, 6, 168–184.

    Article  Google Scholar 

  • Du Toit, B. (2008). Effects of site management on growth, biomass partitioning and light use efficiency in a young stand of Eucalyptus grandis in South Africa. Forest Ecology and Management, 255, 2324–2336.

    Article  Google Scholar 

  • Falge, E., Baldocchi, D., Tenhunen, J., Aubinet, M., Bakwin, P., Berbigier, P., Bernhofer, C., Burba, G., Clement, R., Davis, K. J., Elbers, J. A., Goldstein, A. H., Grelle, A., Granier, A., Guomundsson, J., Hollinger, D., Kowalski, A. S., Katul, G., Law, B. E., Malhi, Y., Meyers, T., Monson, R. K., Munger, J. W., Oechel, W., Paw, K. T., Pilegaard, K., Rannik, U., Rebmann, C., Suyker, A., Valentini, R., Wilson, K., & Wofsy, S. (2002a). Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology, 113, 53–74.

    Article  Google Scholar 

  • Falge, E., Tenhunen, J., Baldocchi, D., Aubinet, M., Bakwin, P., Berbigier, P., Bernhofer, C., Bonnefond, J. M., Burba, G., Clement, R., Davis, K. J., Elbers, J. A., Falk, M., Goldstein, A. H., Grelle, A., Granier, A., Grunwald, T., Gudmundsson, J., Hollinger, D., Janssens, I. A., Keronen, P., Kowalski, A. S., Katul, G., Law, B. E., Malhi, Y., Meyers, T., Monson, R. K., Moors, E., Munger, J. W., Oechel, W., Paw, U. K. T., Pilegaard, K., Rannik, U., Rebmann, C., Suyker, A., Thorgeirsson, H., Tirone, G., Turnipseed, A., Wilson, K., & Wofsy, S. (2002b). Phase and amplitude of ecosystem carbon release and uptake potentials as derived from FLUXNET measurements. Agricultural and Forest Meteorology, 113, 75–95.

    Article  Google Scholar 

  • Grier, C. C., Vogt, K. A., Keyes, M. R., & Edmonds, R. L. (1981). Biomass distribution and above- and below-ground production in young and mature Abies amabilis zone ecosystems of the Washington Cascades. Canadian Journal of Forest Research, 11, 155–167. doi:10.1139/x81-021.

    Article  Google Scholar 

  • Huang, N., Niu, Z., Wu, C., & Tappert, M. C. (2010). Modeling net primary production of a fast-growing forest using a light use efficiency model. Ecological Modelling, 221, 2938–2948.

    Article  Google Scholar 

  • IPCC. (2001). Climate change 2001: The scientific basis. In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, & C. A. Johnson (Eds.), Contribution of working Group-1 to the third assessment report of the intergovernmental panel on climate change (p. 882). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ito, A., & Oikawa, T. (2000). A model analysis of the relationship between climate perturbations and carbon budget anomalies in global terrestrial ecosystems: 1970 to 1997. Climate Research, 15, 161–183.

    Article  Google Scholar 

  • John, R., Chen, J., Noormets, A., Xiao, X., Xu, J., Lu, N., & Chen, S. (2013). Modelling gross primary production in semi-arid Inner Mongolia using MODIS imagery and eddy covariance data. International Journal of Remote Sensing, 34, 2829–2857.

    Article  Google Scholar 

  • Landsberg, J. J. (1986). Physiological ecology of forest production (pp. 165–178). London: Academic.

    Google Scholar 

  • Law, B. E., Waring, R. H., Anthoni, P. M., & Aber, J. D. (2000). Measurements of gross and net ecosystem productivity and water vapour exchange of a Pinus ponderosa ecosystem, and an evaluation of two generalized models. Global Change Biology, 6, 155–168.

    Article  Google Scholar 

  • Monteith, J. L. (1972). Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 9, 747–766.

    Article  Google Scholar 

  • Monteith, J. L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London, B281, 277–294.

    Article  Google Scholar 

  • Myneni, R. B., & Williams, D. L. (1994). On the relationship between FAPAR and NDVI. Remote Sensing of Environment, 49, 200–221.

    Article  Google Scholar 

  • Nayak, R. B., Patel, N. R., & Dadhwal, V. K. (2010). Estimation and analysis of terrestrial net primary productivity over India by using remote sensing driven CASA model. Environmental Monitoring and Assessment, 170(1–4), 195.213.

    Google Scholar 

  • Nayak, R. B., Patel, N. R., & Dadhwal, V. K. (2013). Inter-annual variability of terrestrial net primary productivity over India. International Journal of Climatology, 33, 132–142.

    Article  Google Scholar 

  • Nemani, R., White, M., Thornton, P., Nishida, K., Reddy, S., Jenkins, J., & Running, S. (2002). Recent trends in hydrologic balance have enhanced the terrestrial carbon sink in the United States. Geophysical Research Letters, 29, 106-1.

    Article  Google Scholar 

  • Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B., & Running, S. W. (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 1560–1563.

  • Nyombi, K., Van Asten, P. J. A., Leffelaar, P. A., Corbeels, M., Kaizzi, C. K., & Giller, K. E. (2009). Allometric growth relationships of East Africa highland bananas (Musa AAA-EAHB) cv. Kisansa and Mbwazirume. The Annals of Applied Biology, 155, 403–418.

    Article  Google Scholar 

  • Patel, N. R., Saha, S. K., & Dadhwal, V. K. (2010). Evaluation of MODIS data potential to infer water stress for wheat NPP estimation. Tropical Ecology, 51(1), 93–105.

    Google Scholar 

  • Patel, N. R., Dadhwal, V. K., & Saha, S. K. (2011). Measurement and scaling of carbon dioxide (CO2) exchange in wheat using flux-tower and remote sensing. Journal of the Indian Society of Remote Sensing, 39(3), 383–391.

    Article  Google Scholar 

  • Peng, D., Zhang, B., Liu, L., Chen, D., Fang, H., & Hu, Y. (2012). Seasonal dynamic pattern analysis on global FAPAR derived from AVHRR GIMMS NDVI. International Journal of Digital Earth, 5, 439–455. doi:10.1080/17538947.2011.596579.

    Article  Google Scholar 

  • Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A., & Klooster, S. A. (1993). Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, 7, 811–841.

    Article  Google Scholar 

  • Prince, S. D., & Goward, S. N. (1995). Global primary production: a remote sensing approach. Journal of Biogeography, 22, 815–835.

    Article  Google Scholar 

  • Raich, J. W., Rastetter, E. B., Melillo, J. M., Kicklighter, D. W., Steudler, P. A., Peterson, B. J., Grace, A. L., Moore Iii, B., & Vörösmarty, C. J. (1991). Potential net primary productivity in South America: application of a global model. Ecological Applications, 1, 399–429.

    Article  Google Scholar 

  • Ruimy, A., & Saugier, B. (1994). Methodology for the estimation of terrestrial net primary production from remotely sensed data. Journal of Geophysical Research, 97, 18515–18521.

    Google Scholar 

  • Ruimy, A., Kergoat, L., & Bondeau, A. (1999). Comparing global models of terrestrial net primary productivity (NPP): analysis of differences in light absorption and light-use efficiency. Global Change Biology, 5, 56–64.

    Article  Google Scholar 

  • Running, S.W., Nemani, R., Glassy, J.M., & Thornton, P.E. (1999). MODIS daily photosynthesis (PSN) and annual net primary production (NPP) product (MOD17), algorithm theoretical basis document, version 3.0.

  • Running, S. W., Thornton, P. E., Nemani, R., & Glassy, J. M. (2000). Global terrestrial gross and net primary productivity from the earth observing system. In O. E. Sala, R. B. Jackson, & H. A. Mooney (Eds.), Methods in ecosystem science (pp. 44–57). New York: Springer.

    Chapter  Google Scholar 

  • Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M. S., Reeves, M., & Hashimoto, H. (2004). A continuous satellite-derived measure of global terrestrial primary production. Bioscience, 54, 547–560.

    Article  Google Scholar 

  • Sellers, P. J., Randall, D. A., Collatz, C. J., Berry, J. A., Field, C. B., Dazlich, D. A., Zhang, C., & Colello, G. D. (1996). A revised land surface parameterization (SiB2) for atmospheric GCM’s. Part I: model formulation. Journal of Climate, 9, 676–705.

    Article  Google Scholar 

  • Turner, D. P., Urbanski, S., Bremer, D., Wofsy, S. C., Meyers, T., Gower, S. T., & Gregory, M. (2003). A cross-biome comparison of daily light-use efficiency for gross primary production. Global Change Biology, 9, 385–395.

    Article  Google Scholar 

  • Varma, S. (2006). Light use efficiency and productivity estimation in forest of Panna National Park, Panna district, M.P.- A remote sensing and GIS approach. M.Tech. thesis. Indian Institute of Remote Sensing, Dehradun, India.

  • Watham, T., Kushwaha, S. P. S., Patel, N. R., & Dahwal, V. K. (2014). Monitoring of carbon dioxide and water vapour exchange over a young mixed forest plantation using eddy covariance technique. Current Science, 107(5), 858–867.

    Google Scholar 

  • Wofsy, S. C., Goulden, M. L., Munger, J. W., Fan, S. M., Bakwin, P. S., Daube, B. C., Bassow, S. L., & Bazzaz, F. A. (1993). Net exchange of CO2 in a midlatitude forest. Science, 260, 1314–1317.

    Article  Google Scholar 

  • Xiao, X. M., Zhang, Q. Y., Braswell, B., Urbanski, S., Boles, S., Wofsy, S., Moore, B., & Ojima, D. (2004). Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sensing of Environment, 91, 256–270.

    Article  Google Scholar 

  • Xiao, X. M., Zhang, Q. Y., Hollinger, D., Aber, J., & Moore, B. (2005). Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data. Ecological Applications, 15, 954–969.

    Article  Google Scholar 

  • Yoder, B. J., Ryan, M. G., Waring, R. H., Schoettle, A. W., & Kaufmann, M. R. (1994). Evidence of reduced photosynthetic rates in old trees. Forestry Sciences, 40, 513–527.

    Google Scholar 

  • Zhang, Q., Middleton, E. M., Margolis, H. A., Drolet, G. G., Barr, A. A., & Black, T. A. (2009). Can a satellite-derived estimate of the fraction of PAR absorbed by chlorophyll (FAPARchl) improve predictions of light-use efficiency and ecosystem photosynthesis for a boreal aspen forest? Remote Sensing of Environment, 113, 880–888.

    Article  Google Scholar 

  • Zhao, M., Heinsch, F. A., Nemani, R. R., & Running, S. W. (2005). Improvements of the MODIS terrestrial gross and net primary production global dataset. Remote Sensing of Environment, 95, 164–176.

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out as a part of National Carbon Project (NCP) supported by ISRO-Geosphere-Biosphere Programme. Authors are thankful to Director, IIRS for constant support and encouragement during the course of this study. We duly acknowledge the Forest Department, Uttarakhand for providing necessary permission for setting up the flux tower. Sincere thanks are due to Division Forest Officer and staff of Terai Central Forest Division, Haldwani for continuous support to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joyson Ahongshangbam.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahongshangbam, J., Patel, N.R., Kushwaha, S.P.S. et al. Estimating Gross Primary Production of a Forest Plantation Area Using Eddy Covariance Data and Satellite Imagery. J Indian Soc Remote Sens 44, 895–904 (2016). https://doi.org/10.1007/s12524-016-0564-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-016-0564-7

Keywords

Navigation