Skip to main content

Advertisement

Log in

Multi-criteria analysis for mapping of environmentally sensitive areas in a karst ecosystem

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Karst ecosystems are one of the ecologically sensitive areas most affected by the dramatic harmful effects of the desertification process due to their structural, geomorphologic, and ecologic characteristics. The objective of this study was to assess and mapping ecologically sensitive areas (ESAs) for monitoring desertification and improving degraded forest areas in karst ecosystems. Sensitive ecological areas were evaluated using the Mediterranean Desertification and Land Use Methodology (MEDALUS) by considering soil quality, vegetation quality, climate quality, and management quality. Three new parameters (exposed rocky surface index, soil organic carbon index, and depression area index) were added specifically to karst ecosystem were evaluated using the Analytic Hierarchic Process (AHP) to determine ecological sensitivity. The study area is Sarimsak Karstic Mountain located in Andirin, Kahramanmaras. Soil organic carbon exposed rocky surface and depression area indices were evaluated over 110 soil samples. Values of each indices were determined according to the AHP methodology. The new SQImodified map, which was generated using new indices unique to karstic ecosystems provided a more precise spatial distribution. The results indicated that 44.49% of the study area is Critical, 51.94% is Fragile, and 3.58% is Potential in terms of desertification levels. In areas identified as Critical; agricultural fields, rangelands, and rocky surfaces cover 71.54%. Urban areas were evaluated as 100% Fragile class. Forested areas were evaluated in the Fragile and Potential class. The forest cover class affects Fragile and Potential status very closely. With the increase in forest cover rate, it has reduced fragility. The most critical ESAi classification area (C3) was detected in rangelands. Specific indices should be created to provide a realistic perspective in the combat to desertification in karst ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Modified from Kosmas et al., 1999)

Fig. 3

(Modified from Saaty, 1980)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig.16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Agnihotri, D., Kumar, T., & Jhariya, D. (2021). Intelligent vulnerability prediction of soil erosion hazard in semi-arid and humid region. Environment, Development and Sustainability, 23, 2524–2551.

    Article  Google Scholar 

  • Akbari, M., Memarian, H., Neamatollahi, E., Shalamzari, M. J., Noughani, M. A., & Zakeri, D. (2020). Prioritizing policies and strategies for desertification risk management using MCDM–DPSIR approach in northeastern Iran. Environment, Development and Sustainability, 23, 2503–25231.

    Article  Google Scholar 

  • Aksu, G. A., & Küçük, N. (2020). Evaluation of urban topography–biotope–population density relations for Istanbul-Beşiktaş urban landscape using AHP. Environment, Development and Sustainability, 22(2), 733–758.

    Article  Google Scholar 

  • Bai, X. Y., Wang, S. J., & Xiong, K. N. (2013). Assessing spatial temporal evolution processes of karst rocky desertification land: indications for restoration strategies. Land Degradation & Development, 24, 47–56.

    Article  Google Scholar 

  • Basu, T., & Pal, S. (2020). A GIS-based factor clustering and landslide susceptibility analysis using AHP for Gish River Basin, India. Environment, Development and Sustainability, 22, 4787–4819.

    Article  Google Scholar 

  • Besser, H., & Hamed, Y. (2021). Environmental impacts of land management on the sustainability of natural resources in Oriental Erg Tunisia, North Africa. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-020-01135-9.

    Article  Google Scholar 

  • Blumenthal, M. (1947). Geology of Taurus Mountains at the hinterland of Seydişehir-Beyşehir: MTA Publ., ser. D, 2, Ankara.

  • Botoni, E., Larwanou, M., & Reij, C. (2010). La régénération naturelle assistée (RNA): une opportunité pour reverdir. de la Grande Muraille Verte, IRD Editions, pp. 151-162

  • Boudjemline, F., & Semar, A. (2018). Assessment and mapping of desertification sensitivity with MEDALUS model and GIS – Case study: basin of Hodna, Algeria. Journal of Water and Land Development, 36, 17–26.

    Article  Google Scholar 

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54, 464–465.

    Article  Google Scholar 

  • Budak, M., Günal, H., Çelik, İ, Yıldız, H., Acir, N., & Acar, M. (2018). Environmental sensitivity to desertification in northern Mesopotamia; application of modified MEDALUS by using analytical hierarchy process. Arabian Journal of Geosciences, 11(17), 481.

    Article  Google Scholar 

  • Cabral, A. C., De Miguel, J. M., & Rescia, A. J. (2003). Shrub encroachment in Argentinean savannas. Journal of Vegetation Science, 14(2), 145–152. https://doi.org/10.1658/1100-9233(2003)014[0145:SEIAS]2.0.CO;2.

    Article  Google Scholar 

  • Chen, H. S., & Wang, K. L. (2008). Soil water research in karst mountain areas of southwest China. Research of Agricultural Modernization, 29(6), 734–738.

    CAS  Google Scholar 

  • Clark, S. C. (1996). Mediterranean ecology and an ecological synthesis of the field sites. In J. Brandt & J. Thornes (Eds.), Mediterranean desertification and land use. (pp. 271–299). New York: John Willey & Sons.

    Google Scholar 

  • D’Antonio, C. M., & Vitousek, P. M. (1992). Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics, 23, 63–87.

    Article  Google Scholar 

  • Descroix, L., Viramontes, D., Vauclin, M., Barrios, J. L. G., & Esteves, M. (2001). Influence of soil surface features and vegetation on runoff anderosion in the Western Sierra Madre (Durango, Northwest Mexico). CATENA, 43, 115–135.

    Article  Google Scholar 

  • Dindaroglu, T. (2015). Resistance to the reclamation of environmentally sensitive areas through the establishment of a new forest ecosystem. Fresenius Environmental Bulletin, 24(4), 1195–1203.

    CAS  Google Scholar 

  • Dindaroglu, T. (2020). Determination of ecological networks for vegetation connectivity using GIS & AHP technique in the Mediterranean degraded karst ecosystems. Journal of Arid Environments. https://doi.org/10.1016/j.jaridenv.2020.104385.

    Article  Google Scholar 

  • Dindaroglu, T., Gundogan, R., & Karaoz, M. O. (2019). Determination of spatial distribution of topsoil organic carbon stock using geostatistical technique in a karst ecosystem. International Journal of Global Warming, 19(3), 251–266.

    Article  Google Scholar 

  • Dindaroğlu, T., & Vermez, Y. (2019). Classification and mapping of some site features of karst ecosystems (Sarımsak Mountain Andırın-Kahramanmaraş). Turkish Journal of Forest Science, 3(1), 60–83.

    Article  Google Scholar 

  • DISMED (2005). http://dismed.eionet.eu.int/ Desertification information system for the Mediterranean

  • Dregne H.E, Chou N.T. (1992) Global desertification dimensions and costs. In: Dregne, H.E. (Ed.). Degradation and restoration of arid lands, Texas, Tech. University, Lubbock. pp. 249–282

  • ESRI. (2011). Arcgis desktop: release 10. . Environmental Systems Research Institute.

    Google Scholar 

  • Febles, G. J., Vega, C. M., Tolón, B. A., & Lastra, B. X. (2012). Assessment of soil erosion in karst regions of Havana, Cuba. Land Degradation and Development, 23, 465–474.

    Article  Google Scholar 

  • Feoli, E., Giacomich, P., Mignozzi, K., Ozturk, M., & Scimone, M. (2003). Monitoring desertification risk with an index integrating climatic and remotely-sensed data: An example from the coastal area of Turkey. Management of the Environmental Quality, 14, 10–21.

    Article  Google Scholar 

  • Ferrara, A., Salvati, L., Sateriano, A., & Nole, A. (2012). Performance evaluation and costs assessment of a key indicator system to monitor desertification vulnerability. Ecological Indicators, 23, 123–129.

    Article  Google Scholar 

  • Gonzalez, P. (2001). Desertification and a shift of forest species in the West African Sahel. Climate Research, 17, 217–228.

    Article  CAS  Google Scholar 

  • Griffiths, J. C., & Dushenko, W. T. (2011). Effectiveness of GIS suitability mapping in predicting ecological impacts of proposed wind farm development on Aristazabal Island, BC. Environment, Development and Sustainability, 13(6), 957–991.

    Article  Google Scholar 

  • Gulcur, F., (1974). The Book of Physical and Chemical Analysis Methods of Soil. Kutulmus Printing House, IU Publication No. 1970, Faculty of Forestry Publication No. 201, Istanbul, 225 p.

  • Guo, F., Jiang, G., Yuan, D., & Polk, J. (2013). Evolution of major environmental geological problems in karst areas of southwestern china. Environmental Earth Sciences, 69(7), 2427–2435.

    Article  Google Scholar 

  • Haktanır, K., Karaca, A., & Omar, S. M. (2004). The prospects of the impact of desertification on Turkey, Lebanon, Syria and Iraq. In A. Marquina (Ed.), Environmental Challenges in the Mediterranean 2000–2050, Chapter 9. (pp. 139–154). Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Hamdouch, A., & Zuindeau, B. (2010). Sustainable development, 20 years on: methodological innovations, practices and open issues. Journal of Environmental Planning and Management, 53(4), 427–438.

    Article  Google Scholar 

  • Hornero, J., Manzano, M., Ortega, L., & Custodio, E. (2016). Integrating soil water and tracer balances, numerical modelling and GIS tools to estimate regional groundwater recharge: application to the Alcadozo Aquifer System (SE Spain). Science of the Total Environment, 568, 415–432.

    Article  CAS  Google Scholar 

  • Huang, Q. H., & Cai, Y. L. (2007). Spatial pattern of karst rock desertifi- cation in the middle of Guizhou Province, Southwestern China. Environmental Geology, 52, 1325–1330.

    Article  Google Scholar 

  • Irmak, A. (1954). Research methods of soil in the field and in the laboratory. Istanbul Univ. Publications 599/27.

  • Jensen, S. K., & Domingue, J. O. (1988). Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 54, 1593–1600.

    Google Scholar 

  • Jhariya, D. C., Kumar, T., Dewangan, R., Pal, D., & Dewangan, P. K. (2017). Assessment of groundwater quality index for drinking purpose in the Durg district, Chhattisgarh using Geographical Information System (GIS) and Multi-Criteria Decision Analysis (MCDA) techniques. Journal of the Geological Society of India, 89(4), 453–459.

    Article  CAS  Google Scholar 

  • Jiang, Z. C., Lian, Y. Q., & Qin, X. Q. (2014). Rocky desertification in Southwest China: impacts, causes, and restoration. Earth Science Reviews, 132, 1–12.

    Article  Google Scholar 

  • Johnston, K., Hoef, M., Krivoruchko, K., & Lucas, N. (2001). Using ArcGIS geostatistical Analyst. . ESRI.

    Google Scholar 

  • Kosmas, C., Danalatos, N., Moustakas, N., Tsatiris, B., Kallianou, C. H., & Yassoglou, N. (1993). The impacts of parent material and landscape position on drought and biomass production of wheat under semi-arid conditions. Soil Technology, 6, 337–349.

    Article  Google Scholar 

  • Kosmas, C., Danalatos, N. G., & Gerontidis, S. (2000). The effect of land parameters on vegetation performance and degree of erosion under Mediterranean conditions. CATENA, 40, 3–17.

    Article  Google Scholar 

  • Kosmas, C., Kirkby, M. J., & Geeson, N. (Eds.). (1999). The Medalus Project: Mediterranean desertification and land use: Manual on key indicators of desertification and mapping environmentally sensitive areas to desertification. Directorate-General Science, Research and Development.

  • Kozlu, H. (1987). Misis-Andırın Dolaylarının Stratigrafisi ve Yapısal Evrimi. Türkiye 7. Petrol Kong., Ankara, pp. 104–116.

  • Langemeyer, J., Gómez-Baggethun, E., Haase, D., Scheuer, S., & Elmqvist, T. (2016). Environmental science & policy bridging the gap between ecosystem service assessments and land-use planning through multi-criteria decision analysis (MCDA). Environmental Science & Policy., 62, 45–56.

    Article  Google Scholar 

  • Liu, J., Gao, J., Ma, S., Wang, W., & Zou, C. (2015). Comprehensive evaluation of ecoenvironmental sensitivity in Inner Mongolia China. China Environmental Science, 35(2), 591–598.

    Google Scholar 

  • Maidment, D. R. ( 2002). Arc Hydro, GIS for Water Resources. ESRI, Redlands, California, USA. Isbn: 1-58948034-1

  • Maidment, D. R., Djokic, D. (2000). Hydrologic and Hydraulic Modeling Support With Geographical Information Systems. Esri, Redlands, California, USA. Isbn: 927378100

  • MGM. (2017). General Directorate of State Meteorology Affairs, Kahramanmaraş Meteorology Provincial Directorate, Kahramanmaras - Andirin Meteorology Station Report Book, pp. 1975-2010

  • Mick, D. (2010). Human interaction with Caribbean karst landscapes: past, present and future. Acta Carsologica, 39, 137–146.

    Google Scholar 

  • Nelson, D.W., Sommers, L. E. (1996). Total Carbon, Organic Carbon, and Organic Matter, Methods of Soil Analysis, Part 3. Chemical Methods, Ed: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Soil Science Society of America, 5, 961-1010

  • Okin, G. S., Murray, B., & Schlesinger, W. H. (2001). Degradation of sandy arid shrubland environments: observations, process modeling, and management implications. Journal of Arid Environments, 47, 123–144.

    Article  Google Scholar 

  • Peng, J., Xu, Y. Q., Zhang, R., Xiong, K. N., & Lan, A. J. (2013). Soil erosion monitoring and its implication in a limestone land suffering from rocky desertification in the Huajiang Canyon, Guizhou, Southwest China. Environment and Earth Science, 69, 831–841.

    Article  Google Scholar 

  • Poesen, J., van Wesemael, B., Bunte, K., & Benet, A. (1998). Variation of rock fragment cover and size along semiarid hillslopes: a book of case study from southern Spain. Geomorphology, 23, 323–335.

    Article  Google Scholar 

  • Puigdefabregas, J. (1998). Ecological impacts of global change on drylands and their implications on desertification. Land Degradation and Rehabilitation, 9, 393.

    Article  Google Scholar 

  • Ramanathan, R. A. (2001). Note on the use of the analytic hierarchy process for environmental impact. Journal of Environmental Management, 63, 27–35.

    Article  CAS  Google Scholar 

  • Rossi, R. (2020). Desertification and agriculture. European Parliamentary Research Service PE 646.171 https://www.europarl.europa.eu/RegData/etudes/BRIE/2020/646171/EPRS_BRI(2020)646171_EN.pdf

  • Roxo, M. J., Mourao, J., Rodrigues, M. L., & Casimiro, P. C. (1999). Applicatıon of the proposed methodology for defining ESAs of the Alentejo region Metrola municipality. .

    Google Scholar 

  • Saaty, R.W., Rokou, E., Adams, W. J. (2019). Super Decisions Software development is sponsored by the Creative Decisions Foundation. Accessed Date: 10.12.2019. https://www.superdecisions.com/about/index.php?section=devTeam

  • Saaty, T. L. (1980). The analytic hierarchy process. . McGraw-Hill.

    Google Scholar 

  • Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26.

    Article  Google Scholar 

  • Saaty, T. L. (1991). Método de Análise Hierárquica. . São Paulo.

    Google Scholar 

  • Saaty, T. L., & Vargas, L. G. (1994). Decision making in economic, political, social, and technological environments with the analytic hierarchy process. . RWS Publications.

    Google Scholar 

  • Salvati, L. (2014). Toward a ‘Sustainable’land degradation? Vulnerability degree and component balance in a rapidly changing environment. Environment, Development and Sustainability, 16(1), 239–254.

    Article  Google Scholar 

  • Seager, R. (2007). Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 16(5828), 1181–1184.

    Article  CAS  Google Scholar 

  • Sharma, K. D. (1998). The hydrological indicators of desertification. Journal of Arid Environments, 39(2), 121–132.

    Article  Google Scholar 

  • Smith, P., Calvin, K., Nkem, J., Campbell, D., Cherubini, F., Grassi, G., Korotkov, V., Hoang, A. L., Lwasa, S., McElwee, P., Nkonya, E., Saigusa, N., Soussana, J. F., Taboada, M. A., Manning, C., Nampanzira, D., Navarro, C. A., Vizzarri, M., House, J., … Rounsevell, M. (2019). Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Global Change Biology, 26(3), 1532–1575.

    Article  Google Scholar 

  • Symeonakis, E., Karathanasi, N., Koukoulas, S., & Panagopoulos, G. (2014). Monitoring sensitivity to land degradation and desertification with the environmentally sensitive area index: the case of Lesvos Island. Land Degradation and Development, 22, 184–197.

    Google Scholar 

  • UNCCD. (1994). United Nations Convention to Combat Desertification in Those Countries Experiencing Serious Drought and/or Desertification Particularly in Africa: United Nations Convention to Combat Desertification Text with Annexes. . UNEP.

    Google Scholar 

  • UNEP (2007). Natural Disasters and Desertification. United Nations Environment Programme. Post-Conflict Environmental Assessment. ISBN: 978-92-807-2702-9, p: 69

  • USGS (1997). United States Geological Survey article “Desertification” <http://pubs.usgs.gov/gip/deserts/desertification/> Maintained by Publications Service Center Last modified 10/29

  • Veni, G., DuChene, H., Crawford, N.C., Groves, C.G., Huppert, G.N., Kastning, E.H., Olson, R., Wheeler, B.J. (2001). Living With Karst. American Geological Institute, ISBN 0–922152–58–6

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38.

    Article  CAS  Google Scholar 

  • Wang, D. L., Zhu, S. Q., & Huang, B. L. (2005). Internal Factors Influencing Karst Rocky Desertification (in Chinese). J. Zhej. For. Coll., 22, 266–271.

    Google Scholar 

  • Williams, J., Prebble, R. E., Williams, W. T., & Hignett, C. T. (1983). The influence of texture, structure and clay mineralogy on the soil moisture characteristic. Australian Journal of Soil Research, 21, 15–32.

    Article  Google Scholar 

  • Wu, X., Liu, H., Huang, X., & Zhou, T. (2011). Human driving forces: Analysisof rocky desertification in karst region in guanling county, guizhou province. Chinese Geographical Ence, 21(5), 92–100.

    Google Scholar 

  • Xu, E. Q., & Zhang, H. Q. (2014). Characterization and interaction of driving factors in karst rocky desertification: a case study from Changshun China. Solid Earth, 5, 1329–1340. https://doi.org/10.5194/se-5-1329-2014.

    Article  Google Scholar 

  • Yılmaz, Y., & Gurer, Ö. F. (1996). Andırın Kahramanmaraş dolayında Misis Andırın kuşağının jeolojisi ve evrimi. Turkish Journal Of Earth Sciences, 5, 39–55.

    Article  Google Scholar 

  • Zhang, D. F., & Zhou, D. Q. (2001). Intrinsic driving mechanism of land rocky desertification in karst regions of Guizhou Province. Bulletin of Soil and Water Conservation, 21, 1–5.

    Google Scholar 

  • Zhang, P., Li, L., Pan, G., & Ren, J. (2006). Soil quality changes in land degradation as indicated by soil chemical, biochemical and microbiological properties in a karst area of southwest Guizhou China. Environmental Geology, 51(4), 609–619.

    Article  CAS  Google Scholar 

  • Zou, H., & Ma, X. (2021). Identifying resource and environmental carrying capacity in the Yangtze River Economic Belt, China: The perspectives of spatial differences and sustainable development. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-021-01271-w.

    Article  Google Scholar 

  • Zuindeau, B. (2007). Territorial equity and sustainable development. Environmental Values, 16(2), 253–268.

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank to Kahramanmaras Sutcu Imam University, Faculty of Forestry, Soil Science & Ecology laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turgay Dindaroglu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozgul, M., Dindaroglu, T. Multi-criteria analysis for mapping of environmentally sensitive areas in a karst ecosystem. Environ Dev Sustain 23, 16529–16559 (2021). https://doi.org/10.1007/s10668-021-01363-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01363-7

Keywords

Navigation