Skip to main content

Advertisement

Log in

Sustainability assessment of water resource systems using a novel hydro-socio-economic index (HSEI)

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Sustainable management of water resources is an essential process for securing Earth’s present and future generation life. This study offers development of a new comprehensive framework and index for socio-economic evaluation of water resource systems. The hydro-socio-economic index (HSEI) is made of several economic, demographic, technology and communication, and health and sanitation factors at different temporal and spatial scales. The major foci of this research are estimation of HSEI and the analysis of their socio-economic situation of those European countries with increasing renewable water per capita during 1998–2017 periods. The HSEI values for all of the studied European countries range from 0.480 to 0.521 based on the single and combined methods. According to the qualitative classification, the index values are classified in good level for all fourteen countries. The results show that the increase in renewable water per capita influences socio-economic parameters in those countries. The result of this study will further support future investigation of selecting underlying factors that can be used as a criterion for the future planning and decision-making processes to form sustainable policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All of the required data have been presented in our article.

References

  • Adger, W. N. (2003). Social capital, collective action, and adaptation to climate change. Economic Geography, 79(4), 387–404.

    Article  Google Scholar 

  • Aerts, J. C. J. H., Botzen, W. J., Clarke, K. C., Cutter, S. L., Hall, J. W., Merz, B., et al. (2018). Integrating human behavior dynamics into flood disaster risk assessment. Nature Climate Change, 8, 193–199.

    Article  Google Scholar 

  • AghaKouchak, A., Feldman, D., Hoerling, M., Huxman, T., & Lund, J. (2015). Water and climate: Recognize anthropogenic drought. Nature News, 524(7566), 409.

    Article  CAS  Google Scholar 

  • Baliuk, S., Medvedev, V., Kucher, A., Solovey, V., Levin, A., & Kolmaz, Y. (2017). Ukrainian chernozems as a factor in global food security and resilience of agriculture to climate change. In Global symposium on soil organic carbon, Rim, Italija.

  • Bozorg-haddad, O., Solgi, M., & Loaiciga, H. A. (2017). Meta-heuristic and evolutionary algorithms for engineering optimization. New York: Wiley.

    Book  Google Scholar 

  • Brooks, N., Adger, W. N., & Kelly, P. M. (2005). The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Global Environment Chang Part A, 15(2), 151–163.

    Article  Google Scholar 

  • Bui, N. T., Kawamura, A., Amaguchi, H., Du Bui, D., Truong, N. T., & Nakagawa, K. (2018). Social sustainability assessment of groundwater resources: A case study of Hanoi, Vietnam. Ecological Indicators, 93, 1034–1042.

    Article  Google Scholar 

  • Carey, M., Baraer, M., Mark, B. G., French, A., Bury, J., Young, K. R., et al. (2014). Toward hydro-social modeling: Merging human variables and the social sciences with climate-glacier runoff models (Santa River, Peru). Journal of Hydrology, 518, 60–70.

    Article  Google Scholar 

  • Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social vulnerability to environmental hazards. Social Science Quarterly, 84(2), 242–261.

    Article  Google Scholar 

  • Cutter, S. L., Mitchell, J. T., & Scott, M. S. (2000). Revealing the vulnerability of people and places: A case study of Georgetown County, South Carolina. Annals of the Association of American Geographers, 90(4), 713–737.

    Article  Google Scholar 

  • De Oliveira Mendes, J. M. (2009). Social vulnerability indexes as planning tools: Beyond the preparedness paradigm. Journal of Risk Research, 12(1), 43–58.

    Article  Google Scholar 

  • Dean, A. J., Fielding, K. S., Lindsay, J., Newton, F. J., & Ross, H. (2016). How social capital influences community support for alternative water sources. Sustainable Cities and Society, 27, 457–466.

    Article  Google Scholar 

  • Diaz, M. E., Figueroa, R., Alonso, M. L. S., & Vidal-Abarca, M. R. (2018). Exploring the complex relations between water resources and social indicators: The Biobío Basin (Chile). Ecosystem Services, 31, 84–92.

    Article  Google Scholar 

  • Diep, L. (2018). The liquid politics of an urban age. Palgrave Communications, 4(1), 76.

    Article  Google Scholar 

  • Dwyer, A., Zoppou, C., Nielsen, O., Day, S., & Roberts, S. (2004). Quantifying social vulnerability: A methodology for identifying those at risk to natural hazards. Geoscience Australia, 14, 1417–1428.

    Google Scholar 

  • El-Gafy, I. K. E. D. (2018). The water poverty index as an assistant tool for drawing strategies of the Egyptian water sector. Ain Shams Engineering Journal, 9(2), 173–186.

    Article  Google Scholar 

  • Fawell, J., & Nieuwenhuijsen, M. J. (2003). Contaminants in drinking water environmental pollution and health. British Medical Bulletin, 68(1), 199–208.

    Article  CAS  Google Scholar 

  • Ferreira, C. (2006). “Gene expression programming: mathematical modeling by an artificial intelligence (Vol. 21). Berlin: Springer.

    Google Scholar 

  • Forouzani, M., Karami, E., Zamani, G. H., & Moghaddam, K. R. (2013). Agricultural water poverty: Using Q-methodology to understand stakeholders’ perceptions. Journal of Arid Environments, 97, 190–204.

    Article  Google Scholar 

  • GDP—composition, by sector of origin. Retrieved March 19, 2018.

  • Global 500—Countries: Hungary—Fortune. Money 23 July 2012. Retrieved June 10, 2013.

  • Goharian, E., Burian, S. J., & Karamouz, M. (2017). Using joint probability distribution of reliability and vulnerability to develop a water system performance index. Journal of Water Resources Planning and Management, 144(2), 04017081.

    Article  Google Scholar 

  • IMF World Economic Outlook Database. (2011). Central and Eastern Europe. Archived from the original on 15 October 2011. Retrieved April 27, 2011.

  • Jongman, B. (2018). Effective adaptation to rising flood risk. Nature Communications, 9(1), 1986.

    Article  Google Scholar 

  • Karunanithi, N., Grenney, W. J., Whitley, D., & Bovee, K. (1994). Neural networks for river flow prediction. Journal of Computing in Civil Engineering, 8(2), 201–220.

    Article  Google Scholar 

  • Khan, S. (2012). Vulnerability assessments and their planning implications: A case study of the Hutt Valley, New Zealand. Nature Hazards, 64, 1587–1607.

    Article  Google Scholar 

  • Kotzee, I., & Reyers, B. (2016). Piloting a social-ecological index for measuring flood resilience: A Composite Index approach. Ecological Indicators, 60, 45–53.

    Article  Google Scholar 

  • Lannin, P., & Braslina, A. (2010). UPDATE 2-IMF hails Latvia effort but sees risks ahead. Reuters, 15 March 2010. Retrieved July 31, 2010.

  • Lee, Y. J. (2014). Social vulnerability indicators as a sustainable planning tool. Environmental Impact Assessment Review, 44, 31–42.

    Article  Google Scholar 

  • Li, C., Feng, W., Song, F., He, Z., Wu, F., Zhu, Y., et al. (2019). Three decades of changes in water environment of a large freshwater Lake and its relationship with socio-economic indicators. Journal of Environmental Sciences, 77, 156–166.

    Article  Google Scholar 

  • Liang, L., Lal, R., Ridoutt, B. G., Zhao, G., Du, Z., Li, L., et al. (2018). Multi-indicator assessment of a water-saving agricultural engineering project in North Beijing, China. Agricultural Water Management, 200, 34–46.

    Article  Google Scholar 

  • Lietuvos makroekonomikos apžvalga. nr. 62. SEB. (2014). Retrieved September 7 2016.

  • Lima, J. M. T., Valle, D., Moretto, E. M., Pulice, S. M. P., Zuca, N. L., Roquetti, D. R., et al. (2016). A social-ecological database to advance research on infrastructure development impacts in the Brazilian Amazon. Scientific Data, 3, 160071.

    Article  Google Scholar 

  • Montaseri, M., Ghavidel, S. Z. Z., & Sanikhani, H. (2018). Water quality variations in different climates of Iran: Toward modeling total dissolved solid using soft computing techniques. Stochastic Environmental Research and Risk Assessment, 32(8), 2253–2273.

    Article  Google Scholar 

  • Nutrition, Physical Activity and Obesity Albania. (2013). euro.who.int. p. 3.

  • Ojerio, R., Moseley, C., Lynn, K., & Bania, N. (2011). Limited involvement of socially vulnerable populations in federal programs to mitigate wildfire risk in Arizona. Natural Hazards Review, 12(2), 28–36.

    Article  Google Scholar 

  • Pande, S., & Sivapalan, M. (2017). Progress in sociohydrology: A metaanalysis of challenges and opportunities. Wiley Interdisciplinary Reviews: Water, 4(4), e1193.

    Article  Google Scholar 

  • PAP. (2013). Polska żywność—Fundament polskiego eksportu, 2012 kolejnym rokiem rekordowego eksportu żywności.” Ministerstwo Skarbu Państwa (Internet Archive).

  • Polsky, C., Neff, R., & Yarnal, B. (2007). Building comparable global change vulnerability assessments: The vulnerability scoping diagram. Global Environmental Change, 17, 472–485.

    Article  Google Scholar 

  • Popovic, T., Kraslawski, A., Heiduschke, R., & Repke, J. (2014). Indicators of social sustainability for wastewater treatment processes. Computer Aided Chemical Engineering, 34, 723–728.

    Article  CAS  Google Scholar 

  • Prihodi, U. (2017). najbolje pokazuju napredak hrvatskog turizma [Revenue in 2017 show best Croatian tourism’s progress]. hr.n1info.com (in Croatian). N1. 30 March 2018. Retrieved April 22, 2018.

  • Public Information Notice (PIN). (2012). No. 12/76 by IMF. IMF executive board concludes first post-program monitoring discussions with the Republic of Latvia. July 16, 2012. imf.org. Retrieved July 18, 2012.

  • Research and development (R&D): Gross domestic spending on R&D—OECD Data. data.oecd.org. Retrieved February 10 2016.

  • Roboredo, D., Bergamasco, S. M. P. P., & Bleich, M. (2016). Aggregate Index of social-environmental sustainability to evaluate the social-environmental quality in a watershed in the Southern Amazon. Ecological Indicators, 63, 337–345.

    Article  Google Scholar 

  • Schmidtlein, M. C., Shafer, J. M., Berry, M., & Cutter, S. L. (2011). Modeled earthquake losses and social vulnerability in Charleston, South Carolina. Applied Geography, 31, 269–281.

    Article  Google Scholar 

  • Seidl, R., & Barthel, R. (2017). Linking scientific disciplines: Hydrology and social sciences. Journal of Hydrology, 550, 441–452.

    Article  Google Scholar 

  • Strategy of Science, Technology and Innovation 2009–2015. Retrieved August 27, 2010.

  • Tate, E., Cutter, S. L., & Berry, M. (2010). Integrated multihazard mapping. Environment and Planning B: Planning and Design, 37, 646–663.

    Article  Google Scholar 

  • The economies of Bulgaria and Romania. European Commission. Retrieved December 20, 2011.

  • Tunstall, S., Tapsell, S., & Fernandez-Bilbaoet, A. (2007). Vulnerability and flooding: A re-analysis of FHRC data. London: European Community.

    Google Scholar 

  • Vollmer, D., Shaad, K., Souter, N. J., Farrell, T., Dudgeon, D., Sullivan, C. A., et al. (2018). Integrating the social, hydrological and ecological dimensions of freshwater health: The Freshwater Health Index. Science of the Total Environment, 627, 304–313.

    Article  CAS  Google Scholar 

  • Watkins, T. (2014). Economic history and the economy of Hungary. sjsu.edu. San José State University Department of Economics. Retrieved August 6, 2014.

  • Wilson, M., Li, X. Y., Ma, Y. J., Smith, A., & Wu, J. (2017). A review of the economic, social, and environmental impacts of China’s South-North Water Transfer Project: A sustainability perspective. Sustainability, 9(8), 1489.

    Article  Google Scholar 

  • World Bank Country Classification. (2008). Archived from the original on 24 May 2008. Retrieved September 30, 2014.

Download references

Acknowledgements

The authors thank Iran’s National Science Foundation (INSF) for its financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Bozorg-Haddad.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 8, 9, 10, 11 and 12 and Figs. 12, 13, 14, 15 and 16.

Fig. 12
figure 12

Correlation of socio-economic and RWPC parameters

Fig. 13
figure 13

Convergence curve of the GEP models

Fig. 14
figure 14figure 14

Values of HSEI in European continent with different aspects by country using the single linear (SL) method

Fig. 15
figure 15figure 15

Values of HSEI in European continent with different aspects by country using the combined soft computing (CSC) method

Fig. 16
figure 16figure 16

HSEI value of demographic, technology and communication, and health and sanitation aspects and annual scale by country, using SL and CSC methods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ZamanZad-Ghavidel, S., Bozorg-Haddad, O. & Goharian, E. Sustainability assessment of water resource systems using a novel hydro-socio-economic index (HSEI). Environ Dev Sustain 23, 1869–1916 (2021). https://doi.org/10.1007/s10668-020-00655-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00655-8

Keywords

Navigation