Skip to main content
Log in

Catchment Characterisation Tool: Prioritising Critical Source Areas for managing diffuse nitrate pollution

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Where diffuse losses of nutrients from agriculture is a major challenge for integrated catchment management and the achievement of Water Framework Directive objectives, modelling tools can be used to target the high-risk areas and focus the limited resources available for mitigation measures. The Catchment Characterisation Tool (CCT) is a GIS-based model developed to assess the potential risk posed by nitrate and phosphate from diffuse agricultural sources to surface water and groundwater by delineating critical source areas in Irish sub-catchments. The CCT model results have been generated to support pressure-impact assessments following the source-pathway-receptor concept to target local catchment stream walks in areas where the potential impact may be higher. These risk maps can be used at a maximum scale of 1:25,000 (e.g. water body scale) to target areas for Local Catchment Assessments and are not designed or suitable to be used on their own as a basis for decisions at local or field scale. Consequently, these maps act as signposts for where further characterisation and engagement actions should be prioritised. This paper details the model structure and data requirements for the CCT for nitrate followed by validation of the results by comparing a national dataset of measured nitrate concentrations in Irish water bodies with values predicted by the CCT. The model performed well at predicting the annual average nitrate concentrations, with surface waters showing better correlation with CCT predictions than for groundwater. More detailed comparisons with intensively monitored test catchments showed satisfactory correlation between the predictions and measured concentrations. The outputs are displayed in pollution impact potential (PIP) maps that rank the modelled values so that prioritisation can be given to the higher ranked areas or critical source areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. DHPLG, (2018). River Basin Management Plan 2018 - 2021. Department of Housing, Planning and Local Government. https://www.housing.gov.ie/water/water-quality/river-basin-management-plans/river-basin-management-plan-2018-2021-0. Accessed 7 May 2017.

  2. Daly, D., (2013). A healthy catchment initiative for Ireland - making integrated catchment management happen, groundwater and catchment management, Proceedings of the 33rd Annual Groundwater Conference: Tullamore, pp. 1-8.

  3. Pionke, H. B., Gburek, W. J., & Sharpley, A. N. (2000). Critical source area controls on water quality in an agricultural watershed located in the Chesapeake Basin. Ecological Engineering, 14(4), 325–335. https://doi.org/10.1016/S0925-8574(99)00059-2.

    Article  Google Scholar 

  4. Sharpley, A. N., Kleinman, P. J., Flaten, D. N., & Buda, A. R. (2011). Critical source area management of agricultural phosphorus: experiences, challenges and opportunities. Water Science and Technology, 64(4), 945–952.

    Article  CAS  Google Scholar 

  5. Haygarth, P. M., Condron, L. M., Heathwaite, A. L., Turner, B. L., & Harris, G. P. (2005). The phosphorus transfer continuum: linking source to impact with an interdisciplinary and multi-scaled approach. Science of the Total Environment, 344(1-3), 5–14.

    Article  CAS  Google Scholar 

  6. Li, S., Zhang, L., Du, Y., Liu, H., Zhuang, Y., & Liu, S. (2016). Evaluating phosphorus loss for watershed management: integrating a weighting scheme of watershed heterogeneity into export coefficient model. Environmental Modelling & Assessment., 21, 657. https://doi.org/10.1007/s10666-016-9499-1.

    Article  Google Scholar 

  7. Zhang, T. (2010). A spatially explicit model for estimating annual average loads of nonpoint source nutrient at the watershed scale. Environmental Modelling & Assessment, 15, 569–581. https://doi.org/10.1007/s10666-010-9225-3.

    Article  Google Scholar 

  8. Lemunyon, J. L., & Gilbert, R. G. (1993). The concept and need for a phosphorus assessment tool. Journal of Production Agriculture, 6, 483–486.

    Article  Google Scholar 

  9. Giri, S., Nejadhashemi, A. P., & Woznicki, S. A. (2012). Evaluation of targeting methods for implementation of best management practices in the Saginaw River watershed. Journal of Environmental Management, 103, 24–40.

    Article  CAS  Google Scholar 

  10. Giri, S., Qiu, Z., Prato, T., & Luo, B. (2016). An integrated approach for targeting critical source areas to control nonpoint source pollution in watershed. Water Resources Management, 30, 5087–5100.

    Article  Google Scholar 

  11. Heathwaite, A. L., Quinn, P. F., & Hewett, C. J. M. (2005). Modelling and managing critical source areas of diffuse pollution from agricultural land using flow connectivity simulation. Journal of Hydrology, 304(1-4), 446–461.

    Article  CAS  Google Scholar 

  12. Reaney, S. M., Lane, S. N., Heathwaite, A. L., & Dugdale, L. J. (2011). Risk-based modelling of diffuse land use impacts from rural landscapes upon salmonid fry abundance. Ecological Modelling, 222(4), 1016–1029.

    Article  Google Scholar 

  13. Doody, D. G., Archbold, M., Foy, R. H., & Flynn, R. J. (2012). Approaches to the implementation of the Water Framework Directive: targeting mitigation measures at critical source areas of diffuse phosphorus in Irish catchments. Journal of Environmental Management, 93(1), 225–234. https://doi.org/10.1016/j.jenvman.2011.09.002.

    Article  CAS  Google Scholar 

  14. Magette, W. L. (1998). Factors affecting losses of nutrients from agricultural systems and delivery to water resources. In O. T. Carton (Ed.), Draft Guidelines for Nutrient Use in Intensive Agricultural Enterprises, Teagasc (pp. 6–31). Johnstown Castle Research and Development Centre, Wexford.

  15. Shore, M., Murphy, P. N. C., Jordan, P., Mellander, P.-E., Kelly-Quinn, M., Cushen, M., Mechan, S., Shine, O., & Melland, A. R. (2013). Evaluation of a surface hydrological connectivity index in agricultural catchments. Environmental Modelling and Software, 47, 7–15.

    Article  Google Scholar 

  16. Thomas, I. A., Jordan, P., Mellander, P.-E., Fenton, O., Shine, O., Ó hUallacháin, D., Creamer, R., McDonald, N. T., Dunlop, P., & Murphy, P. N. C. (2016). Improving the identification of hydrologically sensitive areas using LiDAR DEMs for the delineation and mitigation of critical source areas of diffuse pollution. Science of The Total Environment., 556, 276–290.

    Article  CAS  Google Scholar 

  17. Thompson, J., Cassidy, R., Doody, D. G., & Flynn, R. (2013). Predicting critical source areas of sediment in headwater catchments. Agriculture, Ecosystems and Environment, 179, 41–52.

    Article  Google Scholar 

  18. Archbold, M., Deakin, J., Bruen, M., Desta, M., Flynn, R., Kelly-Quinn, M., Gill, L., Maher, P., Misstear, B., Mockler, E., O’Brien, R., Orr, A., Packham, I., & Thompson, J. (2016). Contaminant movement and attenuation along pathways from the land surface to aquatic receptors (Pathways Project), Synthesis Report 2007-WQ-CD-1-S1 STRIVE Report. Environmental Protection Agency. ISBN: 978-1-84095-622-1.

  19. Mockler, E., Deakin, J., Archbold, M., Gill, L., Daly, D., & Bruen, M. (2017). Sources of nitrogen and phosphorus emissions to Irish rivers and coastal waters: Estimates from a nutrient load apportionment framework. Science of the Total Environment, 601-602, 326–339. https://doi.org/10.1016/j.scitotenv.2017.05.186.

    Article  CAS  Google Scholar 

  20. Mockler, E. M., Deakin, J., Archbold, M., Daly, D., & Bruen, M. (2016, 2016). Nutrient load apportionment to s0upport the identification of appropriate water framework directive measures. Biology and Environment: Proceedings of the Royal Irish Academy. https://doi.org/10.3318/BIOE.2016.22.

    Google Scholar 

  21. Dunn, S., Vinten, A., Lilly, A., DeGroote, J., Sutton, M., & McGechan, M. (2004). Nitrogen risk assessment model for Scotland: I. Nitrogen leaching. Hydrology and Earth System Sciences, 8(2), 191–204.

    Article  CAS  Google Scholar 

  22. Parshotam, A., Elliott, S., & Shankar, U. (2013). New Zealand national and regional nutrient mapping using the CLUES model. 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December 2013, www.mssanz.org.au/modsim2013.

  23. Elliott, A. H., Semadeni-Davies, A. F., Shankar, U., Zeldis, J. R., Wheeler, D. M., Plew, D. R., Rys, G. J., & Harris, S. R. (2016). A national-scale GIS-based system for modelling impacts of land use on water quality. Environmental Modelling & Software, 86, 131–144.

    Article  Google Scholar 

  24. Groundwater Task Team, (2010). Cumulative nitrogen and phosphorus loadings to groundwater. ENTEC on behalf of SEPA, the Environment Agency (England & Wales), the EPA and the Northern Ireland Environment Agency, 115 pages.

  25. Hunter Williams, N. H., Misstear, B. D. R., Daly, D., & Lee, M. (2013). Development of a national groundwater recharge map for the Republic of Ireland. Quarterly Journal of Engineering Geology and Hydrogeology, 46(4), 493–506. https://doi.org/10.1144/qjegh2012-016.

    Article  Google Scholar 

  26. S.I. 31 (2014). Statutory instruments − Eurpoean Union (Good Agricultural Practice for the Protection of Waters) Regulations 2014: Statutory Office: Dublin, Ireland.

  27. CSO (2010). Census of Agriculture 2010 - final results: Central Statistics Office. http://www.cso.ie/en/statistics/agricultureandfishing/censusofagriculture2010-finalresults. Accessed 28th February 2017.

  28. Coulter, B., & Lalor, S. (2008). Major and micro nutrient advice for productive agricultural crops. Johnstown Castle Environment Research Centre, Wexford, Ireland: Teagasc.

    Google Scholar 

  29. Lalor, S., Coulter, B., Quinlan, G., & Connolly, L. (2010). A survey of fertiliser use in Ireland from 2004–2008 for grassland and arable crops. Teagasc end of project report. Wexford: Johnstown Castle Environment Research Centre ISBN 1-84170-557-8.

    Google Scholar 

  30. Anthony, S., Quinn, P., & Lord, E. (1996). Catchment scale modelling of nitrate leaching. Aspects of Applied Biology, 46, 23–32.

    Google Scholar 

  31. Fealy, R. & Green, S. (2009). Teagasc-EPA Soil and Subsoil Mapping Project. EPA Final Report.

  32. Deakin, J., Archbold, M., Orr, A., O’Brien, R., Maher, P., Thompson, J., Cocchiglia, L., Misstear, B., Kelly-Quinn, M., Ofterdinger, U., & Flynn, R. (2015). Pathways Project Final Report Volume 1: Field Investigation and Catchment Conceptual Models. Johnstown Castle: Environmental Protection Agency.

    Google Scholar 

  33. Melland, A. R., Mellander, P. E., Murphy, P. N. C., Wall, D. P., Mechan, S., Shine, O., Shortle, G., & Jordan, P. (2012). Stream water quality in intensive cereal cropping catchments with regulated nutrient management. Environmental Science & Policy, 24, 58–70. https://doi.org/10.1016/j.envsci.2012.06.006.

    Article  CAS  Google Scholar 

  34. Mellander, P. E., Melland, A. R., Jordan, P., Wall, W. P., Murphy, P. N. C., & Shortle, G. (2012). Quantifying nutrient transfer pathways in agricultural catchments using high temporal resolution data. Environmental Science and Policy, 24, 44–57.

    Article  CAS  Google Scholar 

  35. Mellander, P.-E., Melland, A. R., Murphy, P. N., Wall, D. P., Shortle, G., & Jordan, P. (2014). Coupling of surface water and groundwater nitrate-N dynamics in two permeable agricultural catchments. The Journal of Agricultural Science, 152(Supplement S1), 107–124.

    Article  Google Scholar 

  36. del Prado, A., Brown, L., Schulte, R., Ryan, M., & Scholefield, D. (2006). Principles of development of a mass balance N cycle model for temperate grasslands: an Irish case study. Nutrient Cycling in Agroecosystems, 74(2), 115–131. https://doi.org/10.1007/s10705-005-5769-z.

    Article  Google Scholar 

  37. Packham, I., Archbold, M. Desta, M., Flynn, R, Deakin, J., Gill, L., Mockler, E., Bruen, M. & Misstear, B. (2015). Pathways Project Final Report Volume 3: Catchment Characterisation Tools, STRIVE Report, prepared for the Environmental Protection Agency, Ireland.

  38. EPA. (2013). A risk-based methodology to assist in the regulation of domestic waste water treatment systems. Ireland: Environmental Protection Agency.

    Google Scholar 

  39. Mockler, E., Bruen, M., Desta, M., & Misstear, B. (2015). Pathways Project Final Report Volume 4: Catchment Modelling Tool (STRIVE Report). Ireland, 173 pages: Environmental Protection Agency. https://doi.org/10.13140/RG.2.1.2265.0723.

    Book  Google Scholar 

  40. Culleton, N. (2013). The impact of achieving targets set out in Food Harvest 2020 on phosphorus and nitrogen fertilizer usage, Proceedings of Spring Scientific Meeting 2013, Outlook and best practice for fertilizer use and soil fertility. Horse and Jockey, Thurles, Co Tipperary. 5th February 2013.

  41. Bradley, C., Byrne, C., Craig, M., Free, G., Gallagher, T., Kennedy, B., Little, R., Lucey, J., Mannix, A., McCreesh, P., McDermott, G., McGarrigle, M., Ní Longphuirt, S., O’Boyle, S., Plant, C., Tierney, D., Trodd, W., Webster, P., Wilkes, R., & Wynne, C. (2015). Water quality in Ireland 2010-2012. Wexford: Environmental Protection Agency.

    Google Scholar 

  42. Tedd, K. M., Coxon, C. E., Misstear, B. D., Daly, D., Craig, M., Mannix, A., & Williams, N. H. (2014). An integrated pressure and pathway approach to the spatial analysis of groundwater nitrate: a case study from the southeast of Ireland. Science of the Total Environment, 476-477, 460–476. https://doi.org/10.1016/j.scitotenv.2013.12.085.

    Article  CAS  Google Scholar 

  43. Bedri, Z., & Bruen, M. (2014). Geographic information system-based tools in environmental management. International Journal of Environmental Studies, 71(4), 526–553.

    Article  Google Scholar 

  44. Whitehead, P. G., Wilson, E. J., & Butterfield, D. (1998). A semidistributed integrated nitrogen model for multiple source assessment in catchments (INCA) Part I – model structure and process equations. Science of the Total Environment, 210(211), 547–558.

    Article  Google Scholar 

  45. Jackson-Blake, L. A., Wade, A. J., Futter, M. N., Butterfield, D., Couture, R.-M., Cox, B. A., Crossman, J., Ekholm, P., Halliday, S. J., Jin, L., Lawrence, D. S. L., Lepistö, A., Lin, Y., Rankinen, K., & Whitehead, P. G. (2016). The integrated catchment model of Phosphorus dynamics (INCA-P): description and demonstration of new model structure and equations. Environmental Modelling and Software, 83, 356–386. https://doi.org/10.1016/j.envsoft.2016.05.022.

    Article  Google Scholar 

  46. Gill, L. W., & Mockler, E. M. (2016). Modeling the pathways and attenuation of nutrients from domestic wastewater treatment systems at a catchment scale. Environmental Modelling & Software, 84, 363–377. https://doi.org/10.1016/j.envsoft.2016.07.006.

    Article  Google Scholar 

  47. Daly, D., Deakin, J., Craig, M., Mannix, A., Archbold, M. & Mockler, E. (2016). Progress in implementation of the Water Framework Directive in Ireland, Proceedings of IAH (Irish Group) Conference “Sustaining Ireland’s Water Future: The Role of Groundwater”: Tullamore. Proceeedings vailable at: http://www.iah-ireland.org/annual-conference/. Accessed 7 May 2017.

  48. Packham, I., Archbold, M.A., Mockler, E.M., Mannix, A., Daly, D., Deakin, J. & Bruen, M. (2016). CCT: A simple prioritisation tool for identifying critical source areas for managing waterbourne pollutants. International Environmental Modelling and Software Society (iEMSs), 8th International Congress on Environmental Modelling and Software, Toulouse, France, Sabine Sauvage, José-Miguel Sánchez-Pérez, Andrea Rizzoli (Eds.). http://former.iemss.org/sites/iemss2016/vol3.php. Accessed 7 May 2017.

Download references

Acknowledgements

The authors would like to thank the Department of Agriculture, Food and the Marine for providing access to the Land-Parcel Identification System and the EPA Informatics team, led by Gavin Smith and Claire Byrne, for significant assistance in analysis of the data. This article is an expansion of a paper presented at iEMSs 2016 [48].

Funding

This work was funded by the Environmental Protection Agency of Ireland, initially under the Pathways Project 2007-WQ-CD-1-S1 and then the Catchment Management Tools Project 2013-W-FS-14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Packham.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Parameters and Equations

Table 6 Parameters in the CCT, their relationship to the layers in Table 1 and data sources

Nitrate input equations:

$$ {N}_{\mathrm{A}}={A}_{\mathrm{A}}\hbox{--} O+{A}_{\mathrm{D}}, $$
(A1)
$$ {N}_{\mathrm{P}}=\left\{\begin{array}{c}{S}_{\mathrm{R}}\times {S}_{\mathrm{F}}\kern0.5em \mathrm{if}\ \mathrm{LPIS}\ \mathrm{data}\ \mathrm{used}\\ {}{L}_{\mathrm{U}}\times {L}_{\mathrm{S}}\times {S}_{\mathrm{F}}\ \mathrm{if}\ CSO/ DED\end{array}\right\}. $$
(A2)

Nitrate soil process equations:

$$ {R}_{\mathrm{A}}={N}_{\mathrm{A}}\times {T}_{\mathrm{S}}, $$
(A3)
$$ {L}_{\mathrm{A}}={R}_{\mathrm{A}}\times \left(1-\exp \left(-{L}_{\mathrm{C}}\times \left(\frac{F_{\mathrm{C}}}{E_{\mathrm{R}}}\right)\right)\right), $$
(A4)
$$ {L}_{\mathrm{P}}=N\mathrm{Cycl}{\mathrm{e}}_{IRL\left({N}_P,{S}_D,{A}_D,{C}_T\right)}, $$
(A5)
$$ L=\left\{\begin{array}{c}{L}_{\mathrm{A}}\ \mathrm{if}\ \mathrm{landuse}\ \mathrm{is}\ \mathrm{Arabl}e\\ {}{L}_{\mathrm{P}}\ \mathrm{if}\ \mathrm{landuse}\ \mathrm{is}\ \mathrm{Pasture}\end{array}\right\}. $$
(A6)

Nitrate subsurface pathway equations:

$$ {P}_{\mathrm{S}}=L\times \frac{R_{\mathrm{C}}}{E_{\mathrm{R}}}, $$
(A7)
$$ {P}_{\mathrm{U}}={P}_{\mathrm{s}}\times {\beta}_{\mathrm{N}}, $$
(A8)
$$ {P}_{\mathrm{B}}={P}_{\mathrm{U}}\times {\varphi}_{\mathrm{N}}. $$
(A9)

Nitrate near-surface pathway equations:

$$ {P}_{\mathrm{N}}=L\times \left(\frac{E_{\mathrm{R}}-{R}_{\mathrm{C}}}{E_{\mathrm{R}}}\right), $$
(A10)
$$ {P}_{\mathrm{D}}={P}_{\mathrm{N}}\times {\alpha}_{\mathrm{N}}. $$
(A11)

Nitrate surface receptor equation:

$$ P={P}_{\mathrm{D}}+{P}_{\mathrm{B}}\times {T}_{\mathrm{D}}. $$
(A12)

Appendix 2. Input Coefficients and Transport Factors for Ireland

Table 7 Arable input and offtake amounts
Table 8 Soil transport factors
Table 9 Subsoil transport factors
Table 10 Bedrock transport factors
Table 11 Near-surface delivery factor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Packham, I., Mockler, E., Archbold, M. et al. Catchment Characterisation Tool: Prioritising Critical Source Areas for managing diffuse nitrate pollution. Environ Model Assess 25, 23–39 (2020). https://doi.org/10.1007/s10666-019-09683-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-019-09683-9

Keywords

Navigation