Skip to main content

Advertisement

Log in

Evaluating Phosphorus Loss for Watershed Management: Integrating a Weighting Scheme of Watershed Heterogeneity into Export Coefficient Model

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

The identification of critical source areas (CSAs) and critical source periods (CSPs) are essential prerequisites for cost-effective practices of non-point source (NPS) pollution control. A simple empirical tool combining Export Coefficient Model (ECM) and a Geographic Information Systems (GIS)-based weighting scheme of watershed heterogeneity was proposed to estimate annual and monthly phosphorus loss, to identify critical source areas and periods, and to assess pollution control practices. The GIS-based weighting scheme was developed to represent the transport potential of runoff to move phosphorus from the land surfaces to waters, as a supplement to the source-based ECM. The empirical tool was applied to the Dianchi Lake watershed of China. The results showed that the total phosphorus loss from NPS in 2008 was 352.3 tons. The agricultural land was recognized as the largest and the most spatially various source type. The lakeside plain and the terraces of the watershed were identified as CSAs, which generated more than 90 % of non-point phosphorus. The early part of wet season (from May to August) was the CSPs, when about 70 % of non-point phosphorus was lost. The reduction of phosphorus fertilizers and the vegetated buffer strips (VBS) were effective in controlling phosphorus loss from NPS in the watershed. A reduction of 20 % in phosphorus fertilizer application combined with the set-up of VBS in both riparian area of the main watercourses and the lakeside areas would decrease 25 % of phosphorus loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shen, Z. Y., Liao, Q., Hong, Q., & Gong, Y. W. (2012). An overview of research on agricultural non-point source pollution modelling in china. Separation and Purification Technology, 84, 104–111. doi:10.1016/j.seppur.2011.01.018.

    Article  CAS  Google Scholar 

  2. Drolc, A., & Koncan, J. Z. (2002). Estimation of sources of total phosphorus in a river basin and assessment of alternatives for river pollution reduction. Environment International, 28(5), 393–400. doi:10.1016/S0160-4120(02)00062-4.

    Article  CAS  Google Scholar 

  3. Shen, Z. Y., Hong, Q., Chu, Z., & Gong, Y. W. (2011). A framework for priority non-point source area identification and load estimation integrated with APPI and PLOAD model in Fujiang Watershed, China. Agricultural Water Management, 98(6), 977–989. doi:10.1016/j.agwat.2011.01.006.

    Article  Google Scholar 

  4. Chen, H., Teng, Y., & Wang, J. (2013). Load estimation and source apportionment of nonpoint source nitrogen and phosphorus based on integrated application of SLURP model, ECM, and RUSLE: a case study in the Jinjiang River, China. Environmental Monitoring and Assessment, 185(2), 2009–2021. doi:10.1007/s10661-012-2684-z.

    Article  CAS  Google Scholar 

  5. Endreny, T. A., & Wood, E. F. (2003). Watershed weighting of export coefficients to map critical phosphorous loading areas. Journal of the American Water Resources Association, 39(1), 165–181. doi:10.1111/j.1752-1688.2003.tb01569.x.

    Article  Google Scholar 

  6. Matias, N. G., & Johnes, P. J. (2012). Catchment phosphorous losses: an export coefficient modelling approach with scenario analysis for water management. Water Resources Management, 26(5), 1041–1064. doi:10.1007/s11269-011-9946-3.

    Article  Google Scholar 

  7. Borah, D., & Bera, M. (2003). Watershed-scale hydrologic and nonpoint-source pollution models: review of mathematical bases. Transactions of ASAE, 46(6), 1553–1566.

    Article  Google Scholar 

  8. Cools, J., Broekx, S., Vandenberghe, V., Sels, H., Meynaerts, E., Vercaemst, P., et al. (2011). Coupling a hydrological water quality model and an economic optimization model to set up a cost-effective emission reduction scenario for nitrogen. Environmental Modelling & Software, 26(1), 44–51. doi:10.1016/j.envsoft.2010.04.017.

    Article  Google Scholar 

  9. Zhang, T. (2010). A spatially explicit model for estimating annual average loads of nonpoint source nutrient at the watershed scale. Environmental Modeling and Assessment, 15(6), 569–581. doi:10.1007/s10666-010-9225-3.

    Article  Google Scholar 

  10. Johnes, P. J. (1996). Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modelling approach. Journal of Hydrology, 183(3–4), 323–349. doi:10.1016/0022-1694(95)02951-6.

    Article  CAS  Google Scholar 

  11. Winter, J. G., & Duthie, H. C. (2000). Export coefficient modeling to assess phosphorus loading in an urban watershed. Journal of the American Water Resources Association, 36(5), 1053–1061. doi:10.1111/j.1752-1688.2000.tb05709.x.

    Article  CAS  Google Scholar 

  12. Ma, X., Li, Y., Zhang, M., Zheng, F. Z., & Du, S. (2011). Assessment and analysis of non-point source nitrogen and phosphorus loads in the three gorges reservoir area of Hubei Province, China. Science of the Total Environment, 412, 154–161. doi:10.1016/j.scitotenv.2011.09.034.

    Article  Google Scholar 

  13. Malve, O., Tattari, S., Riihimaki, J., Jaakkola, E., Voss, A., Williams, R., et al. (2012). Estimation of diffuse pollution loads in Europe for continental scale modelling of loads and in-stream river water quality. Hydrological Processes, 26(16), 2385–2394. doi:10.1002/hyp.9344.

    Article  CAS  Google Scholar 

  14. Ding, X. W., Shen, Z. Y., Hong, Q., Yang, Z. F., Wu, X., & Liu, R. M. (2010). Development and test of the export coefficient model in the upper reach of the Yangtze River. Journal of Hydrology, 383(3–4), 233–244. doi:10.1016/j.jhydrol.2009.12.039.

    Article  CAS  Google Scholar 

  15. May, L., House, W. A., Bowes, M., & McEvoy, J. (2001). Seasonal export of phosphorus from a lowland catchment: upper River Cherwell in Oxfordshire, England. Science of the Total Environment, 269(1–3), 117–130. doi:10.1016/s0048-9697(00)00820-2.

    Article  CAS  Google Scholar 

  16. Hickey, M. B. C., & Doran, B. (2004). A review of the efficiency of buffer strips for the maintenance and enhancement of riparian ecosystems. Water Quality Research Journal of Canada, 39(3), 311–317.

    Google Scholar 

  17. Hoffmann, C. C., Kjaergaard, C., Uusi-Kamppa, J., Hansen, H. C. B., & Kronvang, B. (2009). Phosphorus retention in riparian buffers: review of their efficiency. Journal of Environmental Quality, 38(5), 1942–1955. doi:10.2134/jeq2008.0087.

    Article  CAS  Google Scholar 

  18. Duchemin, M., & Hogue, R. (2009). Reduction in agricultural non-point source pollution in the first year following establishment of an integrated grass/tree filter strip system in southern Quebec(Canada). Agriculture, Ecosystems & Environment, 131(1–2), 85–97. doi:10.1016/j.agee.2008.10.005.

    Article  CAS  Google Scholar 

  19. Roberts, W. M., Stutter, M. I., & Haygarth, P. M. (2012). Phosphorus retention and remobilization in vegetated buffer strips: a review. Journal of Environmental Quality, 41(2), 389–399. doi:10.2134/jeq2010.0543.

    Article  CAS  Google Scholar 

  20. Jakeman, A., & Hornberger, G. (1993). How much complexity is warranted in a rainfall-runoff model? Water Resources Research, 29(8), 2637–2649.

    Article  Google Scholar 

  21. Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant. Hydrological Sciences Bulletin, 24(1), 43–69. doi:10.1080/02626667909491834.

    Article  Google Scholar 

  22. Anderson, M. G., & Burt, T. P. (1990). Process studies in hillslope hydrology: an overview. In M. G. Anderson & T. P. Burt (Eds.), Process studies in hillslope hydrology. New York: Wiley.

    Google Scholar 

  23. Beven, K. (1995). TOPMODEL. In V. P. Singh (Ed.), Computer models of watershed hydrology (pp. 627–668). Colorado: Water Resources Publications.

    Google Scholar 

  24. Uusi-Kamppa, J., Braskerud, B., Jansson, H., Syversen, N., & Uusitalo, R. (2000). Buffer zones and constructed wetlands as filters for agricultural phosphorus. Journal of Environmental Quality, 29(1), 151–158.

    Article  CAS  Google Scholar 

  25. Syversen, N. (2005). Effect and design of buffer zones in the Nordic climate: the influence of width, amount of surface runoff, seasonal variation and vegetation type on retention efficiency for nutrient and particle runoff. Ecological Engineering, 24(5), 483–490. doi:10.1016/j.ecoleng.2005.01.016.

    Article  Google Scholar 

  26. Ziegler, A. D., Tran, L. T., Giambelluca, T. W., Sidle, R. C., Sutherland, R. A., Nullet, M. A., et al. (2006). Effective slope lengths for buffering hillslope surface runoff in fragmented landscapes in northern Vietnam. Forest Ecology and Management, 224(1–2), 104–118. doi:10.1016/j.foreco.2005.12.011.

    Article  Google Scholar 

  27. Yang, S. H., & Yang, G. H. (1992). Preliminary study on the structure of land utilization and its ecological evaluation in the Dianchi Lake watershed. Journal of Yunnan University, 02, 202–210.

    Google Scholar 

  28. Li, H. E., & Zhuang, Y. T. (2003). The export coefficient modeling approach for load prediction of nutrients from non-point source and its application. Journal of Xi'an University Technology, 19, 307–312.

    CAS  Google Scholar 

  29. Yang, W. L., & Yang, S. H. (1998). Study on the divisions of non-point pollution sources in the Dianchi Lake basin. Journal of Lake Science, 03, 55–60.

    Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (41471433 and 41001333); the Central Public-interest Scientific Institution Basal Research Fund (2014-37); the Youth Chenguang Project of Science and Technology of Wuhan City (201150431072); and Hubei Province Natural Science Foundation of China (2011CDB404).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Zhang or Hongbin Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

The research do not involve any human participants or animals. All the authors consent to submit this manuscript to Environmental Modeling & Assessment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhang, L., Du, Y. et al. Evaluating Phosphorus Loss for Watershed Management: Integrating a Weighting Scheme of Watershed Heterogeneity into Export Coefficient Model. Environ Model Assess 21, 657–668 (2016). https://doi.org/10.1007/s10666-016-9499-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-016-9499-1

Keywords

Navigation