Skip to main content
Log in

Pollution-Adjusted Productivity Changes: Extending the Färe–Primont Index with an Illustration with French Suckler Cow Farms

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Several approaches have been proposed in the literature to compute technical efficiency indices that account for bad outputs. The literature is, however, less rich when it comes to incorporating bad outputs in productivity indices. In this context, this article extends the multiplicatively complete Färe–Primont productivity index to a generalized version that considers pollution. This novel pollution-adjusted total factor productivity (TFP) is the ratio of an aggregated measure of good outputs to an aggregated measure of bad outputs and non-polluting inputs, in such a way that the materials balance principle is not distorted. A decomposition of this new pollution-adjusted TFP is proposed using the by-production. The latter implies considering a technology that lies at the intersection of two sub-technologies: one for the production of good outputs and the other for the generation of pollution. The pollution-adjusted TFP is further decomposed into pollution-adjusted technical change and efficiency change. The latter is further broken down into technical, scale, mix, and residual efficiency change components. A crucial advantage of the Färe–Primont index is the verification of the transitivity property that allows multi-temporal and multilateral comparisons. The generalized (pollution-adjusted) Färe–Primont TFP proposed here is illustrated with a sample of French suckler cow farms surveyed over the period of 1990 to 2013. The bad outputs considered are greenhouse gas emissions, namely methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O). The results reveal a decrease in pollution-adjusted TFP by 5.57% during the period, due to technological regress of 2.23%, and to technical efficiency decrease of almost 3.34%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. As stressed in Grifell-Tatjé and Lovell [31, p. 80–81], Malmquist [32] has proposed none of the productivity indices that bear his name—his work was centered on the consumer context.

  2. Diewert [40] listed 20 tests.

  3. For simplicity, we assume here no recuperation factor for the good outputs.

  4. Though the sample used in this study is quite small (49 cross sections observed each year), it covers a very long period of time (24 years) which allows a robust assessment of long-run productivity measures and decomposition and prevents misleading results obtained when one computes productivity over a small number of time periods [68]. Moreover, the sample is representative of livestock production in grassland areas and take into account the diversity of this region.

  5. We thank one reviewer for stressing this point.

  6. See tables in Appendix 2.

  7. The classic Färe-Primont productivity index has been measured using the productivity package in R developed by Dakpo et al. [74].

References

  1. Lovell, C. A. K. (2016). Recent developments in productivity analysis. Pacific Economic Review, 21(4), 417–444. https://doi.org/10.1111/1468-0106.12191.

    Article  Google Scholar 

  2. Dakpo, K. H., Jeanneaux, P., & Latruffe, L. (2016). Modelling pollution-generating technologies in performance benchmarking: recent developments, limits and future prospects in the nonparametric framework. European Journal of Operational Research, 250(2), 347–359. https://doi.org/10.1016/j.ejor.2015.07.024.

    Article  Google Scholar 

  3. Shephard, R. W. (1970). Theory of cost and production functions: Princeton University Press Princeton.

  4. Färe, R., & Grosskopf, S. (2009). A comment on weak disposability in nonparametric production analysis. American Journal of Agricultural Economics, 91(2), 535–538.

    Article  Google Scholar 

  5. Färe, R., Grosskopf, S., Lovell, C. K., & Pasurka, C. (1989). Multilateral productivity comparisons when some outputs are undesirable: a nonparametric approach. The Review of Economics and Statistics, 71(1), 90–98.

    Article  Google Scholar 

  6. Färe, R., Grosskopf, S., & Pasurka, C. (1986). Effects on relative efficiency in electric power generation due to environmental controls. Resources and Energy, 8(2), 167–184.

    Article  Google Scholar 

  7. Førsund, F. R. (2017). Multi-equation modelling of desirable and undesirable outputs satisfying the materials balance. Empirical Economics, 54, 67–99. https://doi.org/10.1007/s00181-016-1219-9.

    Article  Google Scholar 

  8. Chung, Y. H., Fare, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: a directional distance function approach. Journal of Environmental Management, 51(3), 229–240. https://doi.org/10.1006/jema.1997.0146.

    Article  Google Scholar 

  9. Kumar, S. (2006). Environmentally sensitive productivity growth: a global analysis using Malmquist–Luenberger index. Ecological Economics, 56(2), 280–293.

    Article  Google Scholar 

  10. Färe, R., Grosskopf, S., & Pasurka, C. A. (2001). Accounting for air pollution emissions in measures of state manufacturing productivity growth. Journal of Regional Science, 41(3), 381–409. https://doi.org/10.1111/0022-4146.00223.

    Article  Google Scholar 

  11. Weber, W. L., & Domazlicky, B. (2001). Productivity growth and pollution in state manufacturing. Review of Economics and Statistics, 83(1), 195–199. https://doi.org/10.1162/rest.2001.83.1.195.

    Article  Google Scholar 

  12. Mahlberg, B., & Sahoo, B. K. (2011). Radial and non-radial decompositions of Luenberger productivity indicator with an illustrative application. International Journal of Production Economics, 131(2), 721–726. https://doi.org/10.1016/j.ijpe.2011.02.021.

    Article  Google Scholar 

  13. Du, J., Chen, Y., & Huang, Y. (2017). A modified Malmquist-Luenberger productivity index: assessing environmental productivity performance in China. European journal of operational research. https://doi.org/10.1016/j.ejor.2017.01.006.

    Article  Google Scholar 

  14. Oh, D.-h., & Heshmati, A. (2010). A sequential Malmquist–Luenberger productivity index: environmentally sensitive productivity growth considering the progressive nature of technology. Energy Economics, 32(6), 1345–1355. https://doi.org/10.1016/j.eneco.2010.09.003.

    Article  Google Scholar 

  15. Coelli, T., Lauwers, L., & Van Huylenbroeck, G. (2007). Environmental efficiency measurement and the materials balance condition. Journal of Productivity Analysis, 28(1–2), 3–12. https://doi.org/10.1007/s11123-007-0052-8.

    Article  Google Scholar 

  16. Hailu, A., & Veeman, T. S. (2001). Non-parametric productivity analysis with undesirable outputs: an application to the Canadian pulp and paper industry. American Journal of Agricultural Economics, 83(3), 605–616. https://doi.org/10.1111/0002-9092.00181.

    Article  Google Scholar 

  17. Murty, S., Russell, R. R., & Levkoff, S. B. (2012). On modeling pollution-generating technologies. Journal of Environmental Economics and Management, 64(1), 117–135. https://doi.org/10.1016/j.jeem.2012.02.005.

    Article  Google Scholar 

  18. Dakpo, K. H., Jeanneaux, P., & Latruffe, L. (2017). Greenhouse gas emissions and efficiency in French sheep meat farming: a non-parametric framework of pollution-adjusted technologies. European Review of Agricultural Economics, 44(1), 33–65. https://doi.org/10.1093/erae/jbw013.

    Article  Google Scholar 

  19. Frisch, R. (1965). Theory of production: Dordrecht Reidel Publishing Company.

  20. Shephard, R. W. (1953). Cost and production functions: DTIC Document.

  21. Caves, D. W., Christensen, L. R., & Diewert, W. E. (1982). The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica, 50(6), 1393–1414. https://doi.org/10.2307/1913388.

    Article  Google Scholar 

  22. Färe, R., Grosskopf, S., Lindgren, B., & Roos, P. (1994). Productivity developments in Swedish hospitals: a Malmquist output index approach. In A. Charnes, W. W. Cooper, A. Y. Lewin, & L. M. Seiford (Eds.), Data envelopment analysis: theory, methodology, and applications (pp. 253–272). Amsterdam: Springer.

    Chapter  Google Scholar 

  23. Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. The American Economic Review, 84(1), 66–83.

    Google Scholar 

  24. Grifell-Tatjé, E., & Lovell, C. A. K. (1997). A DEA-based analysis of productivity change and intertemporal managerial performance. Annals of Operations Research, 73, 177–189.

    Article  Google Scholar 

  25. Oh, Y., Oh, D.-h., & Lee, J.-D. (2016). A sequential global Malmquist productivity index: productivity growth index for unbalanced panel data considering the progressive nature of technology. Empirical Economics, 52, 1–24. https://doi.org/10.1007/s00181-016-1104-6.

    Article  Google Scholar 

  26. Chen, Y., & Ali, A. I. (2004). DEA Malmquist productivity measure: new insights with an application to computer industry. European Journal of Operational Research, 159(1), 239–249. https://doi.org/10.1016/S0377-2217(03)00406-5.

    Article  Google Scholar 

  27. Chen, Y. (2003). A non-radial Malmquist productivity index with an illustrative application to Chinese major industries. International Journal of Production Economics, 83(1), 27–35. https://doi.org/10.1016/S0925-5273(02)00267-0.

    Article  Google Scholar 

  28. Krüger, J. J. (2003). The global trends of total factor productivity: evidence from the nonparametric Malmquist index approach. Oxford Economic Papers, 55(2), 265–286. https://doi.org/10.1093/oep/55.2.265.

    Article  Google Scholar 

  29. Nin, A., Arndt, C., & Preckel, P. V. (2003). Is agricultural productivity in developing countries really shrinking? New evidence using a modified nonparametric approach. Journal of Development Economics, 71(2), 395–415. https://doi.org/10.1016/s0304-3878(03)00034-8.

    Article  Google Scholar 

  30. De Borger, B., & Kerstens, K. (2000). The Malmquist productivity index and plant capacity utilization. Scandinavian Journal of Economics, 102(2), 303–310. https://doi.org/10.1111/1467-9442.00201.

    Article  Google Scholar 

  31. Grifell-Tatjé, E., & Lovell, C. A. K. (2015). Productivity accounting: the economics of business performance: Cambridge University Press.

  32. Malmquist, S. (1953). Index numbers and indifference surfaces. Trabajos de Estadistica, 4(2), 209–242. https://doi.org/10.1007/bf03006863.

    Article  Google Scholar 

  33. O’Donnell, C. J. (2010). Measuring and decomposing agricultural productivity and profitability change. Australian Journal of Agricultural and Resource Economics, 54(4), 527–560. https://doi.org/10.1111/j.1467-8489.2010.00512.x.

    Article  Google Scholar 

  34. Grifell-Tatjé, E., & Lovell, C. A. K. (1995). A note on the Malmquist productivity index. Economics Letters, 47(2), 169–175. https://doi.org/10.1016/0165-1765(94)00497-p.

    Article  Google Scholar 

  35. Lovell, C. A. K. (2003). The decomposition of Malmquist productivity indexes. Journal of Productivity Analysis, 20(3), 437–458. https://doi.org/10.1023/A:1027312102834.

    Article  Google Scholar 

  36. Ray, S. C., & Desli, E. (1997). Productivity growth, technical progress, and efficiency change in industrialized countries: comment. American Economic Review, 87(5), 1033–1039.

    Google Scholar 

  37. Färe, R., Grosskopf, S., & Margaritis, D. (2008). Efficiency and productivity: Malmquist and more. In H. O. Fried, & S. S. Schmidt (Eds.), The measurement of productive efficiency and productivity growth (pp. 522–621).

  38. Bjurek, H. (1996). The Malmquist Total factor productivity index. The Scandinavian Journal of Economics, 98(2), 303. https://doi.org/10.2307/3440861.

    Article  Google Scholar 

  39. Briec, W., & Kerstens, K. (2011). The Hicks-Moorsteen productivity index satisfies the determinateness axiom. The Manchester School, 79(4), 765–775. https://doi.org/10.1111/j.1467-9957.2010.02169.x.

    Article  Google Scholar 

  40. Diewert, W. E. (1992). Fisher ideal output, input, and productivity indexes revisited. Journal of Productivity Analysis, 3(3), 211–248. https://doi.org/10.1007/BF00158354.

    Article  Google Scholar 

  41. O’Donnell, C. J. (2011). The sources of productivity change in the manufacturing sectors of the US economy. Working Papers WP07/2011: School of Economics, University of Queensland, Australia.

  42. Eltetö, O., & Köves, P. (1964). On a problem of index number computation relating to international comparison. Statisztikai Szemle, 42, 507–518.

    Google Scholar 

  43. Szulc, B. (1964). Indices for multiregional comparisons. Przeglad Statystyczny, 3, 239–254.

    Google Scholar 

  44. O’Donnell, C. J. (2012). Nonparametric estimates of the components of productivity and profitability change in U.S. agriculture. American Journal of Agricultural Economics, 94(4), 873–890. https://doi.org/10.1093/ajae/aas023.

    Article  Google Scholar 

  45. Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., et al. (2013). Tackling climate change through livestock – a global assessment of emissions and mitigation opportunities. Rome: Food and Agriculture Organization of the United Nations (FAO).

  46. Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., & De Haan, C. (2006). Livestock’s long shadow: FAO Rome.

  47. Murty, S., & Russell, R. R. (2002). On modeling pollution generating technologies. Discussion Papers Series (pp. 1–18): Department of Economics, University of California, Riverside.

  48. Ayres, R. U., & Kneese, A. V. (1969). Production, consumption, and externalities. The American Economic Review, 59(3), 282–297.

    Google Scholar 

  49. Chambers, R. G. (1988). Applied production analysis: a dual approach: Cambridge University Press.

  50. Färe, R., Grosskopf, S., & Lovell, C. A. K. (1985). The measurement of efficiency of production: Springer.

  51. Murty, S. (2015). On the properties of an emission-generating technology and its parametric representation. Economic Theory, 60(2), 243–282. https://doi.org/10.1007/s00199-015-0877-8.

    Article  Google Scholar 

  52. Dakpo, K. H. (2016). On modeling pollution-generating technologies: a new formulation of the by-production approach. Rennes, France: Working Paper SMART– LERECO N° 16–06, INRA.

  53. Färe, R., Grosskopf, S., & Hernandez-Sancho, F. (2004). Environmental performance: an index number approach. Resource and Energy Economics, 26(4), 343–352.

    Article  Google Scholar 

  54. Zaim, O. (2004). Measuring environmental performance of state manufacturing through changes in pollution intensities: a DEA framework. Ecological Economics, 48(1), 37–47.

    Article  Google Scholar 

  55. Abad, A. (2015). An environmental generalised Luenberger-Hicks-Moorsteen productivity indicator and an environmental generalised Hicks-Moorsteen productivity index. Journal of Environmental Management, 161, 325–334. https://doi.org/10.1016/j.jenvman.2015.06.055.

    Article  CAS  Google Scholar 

  56. Lauwers, L. (2009). Justifying the incorporation of the materials balance principle into frontier-based eco-efficiency models. Ecological Economics, 68(6), 1605–1614. https://doi.org/10.1016/j.ecolecon.2008.08.022.

    Article  Google Scholar 

  57. O’Donnell, C. J. (2012). An aggregate quantity framework for measuring and decomposing productivity change. Journal of Productivity Analysis, 38(3), 255–272. https://doi.org/10.1007/s11123-012-0275-1.

    Article  Google Scholar 

  58. Banker, R. D. (1984). Estimating most productive scale size using data envelopment analysis. European Journal of Operational Research, 17(1), 35–44. https://doi.org/10.1016/0377-2217(84)90006-7.

    Article  Google Scholar 

  59. Olesen, O. B., & Petersen, N. C. (2003). Identification and use of efficient faces and facets in DEA. Journal of Productivity Analysis, 20(3), 323–360. https://doi.org/10.1023/A:1027303901017.

    Article  Google Scholar 

  60. Portela, M. C. A. S., & Thanassoulis, E. (2006). Zero weights and non-zero slacks: different solutions to the same problem. Annals of Operations Research, 145(1), 129–147. https://doi.org/10.1007/s10479-006-0029-4.

    Article  Google Scholar 

  61. Zhu, J. (2015). Data envelopment analysis: a handbook of models and methods (Vol. 221). London: Springer.

  62. Liang, L., Wu, J., Cook, W. D., & Zhu, J. (2008). Alternative secondary goals in DEA cross-efficiency evaluation. International Journal of Production Economics, 113(2), 1025–1030. https://doi.org/10.1016/j.ijpe.2007.12.006.

    Article  Google Scholar 

  63. O’Donnell, C. J. (2008). An aggregate quantity-price framework for measuring and decomposing productivity and profitability change. Working Papers WP07/2008: School of Economics, University of Queensland, Australia.

  64. Dakpo, K. H., Jeanneaux, P., Latruffe, L., Mosnier, C., & Veysset, P. (2018). Three decades of productivity change in French beef production: a Färe-Primont index decomposition. Australian Journal of Agricultural and Resource Economics, 0(0), doi:https://doi.org/10.1111/1467-8489.12264.

    Article  Google Scholar 

  65. Baráth, L., & Fertő, I. (2017). Productivity and convergence in European agriculture. Journal of Agricultural Economics, 68(1), 228–248. https://doi.org/10.1111/1477-9552.12157.

    Article  Google Scholar 

  66. Baležentis, T. (2015). The sources of the total factor productivity growth in Lithuanian family farms: a Färe-Primont index approach. Prague Economic Papers, 2015(2), 225–241.

    Article  Google Scholar 

  67. Charroin, T., & Ferrand, M. (2010). Development of a coefficient set to analyze farm structure costs – application to mechanization costs of mixed farming systems. Renc. Rech. Ruminants, 413–416.

  68. Fuglie, K., MacDonald, J. M., & Ball, V. E. (2007). Productivity growth in US agriculture. USDA-ERS Economic Brief(9).

  69. Førsund, F. R. (2009). Good modelling of bad outputs: pollution and multiple-output production. International Review of Environmental and Resource Economics, 3(1), 1–38. https://doi.org/10.1561/101.00000021.

    Article  Google Scholar 

  70. Guinée, J. B., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., & De Koning, A. (2002). Handbook on life cycle assessment: operational guide to the ISO standards. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  71. Gac, A., Cariolle, M., Deltour, L., Espagnol, S., Flénet, F., Guingand, N., et al. (2011). Greenhouse gases and carbon sequestration – contributions for the environmental assessment of the agricultural activities. Innovations Agronomiques, 17, 83–94.

    Google Scholar 

  72. ADEME (2011). Guide des valeurs Dia’terre. Version référentiel 1.7.

  73. Veysset, P., Lherm, M., Roulenc, M., Troquier, C., & Bebin, D. (2015). Productivity and technical efficiency of suckler beef production systems: trends for the period 1990 to 2012. animal, 9(12), 2050–2059. https://doi.org/10.1017/S1751731115002013.

    Article  CAS  Google Scholar 

  74. Dakpo, K. H., Desjeux, Y., & Latruffe, L. (2017). productivity: indices of productivity and profitability using data envelopment analysis (DEA). R package version 1.0.0. https://CRAN.R-Project.org/package=productivity.

  75. Pasiouras, F. (2013). Efficiency and productivity growth: modelling in the financial services industry: Wiley.

  76. O’Donnell, C. J. (2014). Econometric estimation of distance functions and associated measures of productivity and efficiency change. Journal of Productivity Analysis, 41(2), 187–200. https://doi.org/10.1007/s11123-012-0311-1.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the INRA Egeé team of UMRH, Clermont-Ferrand, France, for data access.

Funding

This research received funding from the Auvergne Regional Board (Conseil Régional d’Auvergne), from the European FP7 project FLINT, and from the FACCE-JPI project INCOME.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hervé Dakpo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Environmental Input Aggregator

We start by defining the environmental input technical efficiency for decision-making unit n as:

$$ {\displaystyle \begin{array}{c}{D}_{\mathrm{I}}^{\mathrm{E}}{\left({x}_n^t,{y}_n^t,{b}_n^t,t\right)}^{-1}=\mathrm{EIT}{\mathrm{E}}_n^t=\underset{\theta, \lambda, \mu, {x}_{\mathrm{M}}}{\min }{\theta}_n^t,\\ {}\mathrm{s}.\mathrm{t}.\kern0.75em {Y}^t{\lambda}^t\ge {y}_n^t,{X}_{\mathrm{M}}^t{\lambda}^t\le {x}_{n\mathrm{M}}^t,{X}_{\mathrm{S}}^t{\lambda}^t\le {\theta}_n^t{x}_{n\mathrm{S}}^t,{B}^t{\mu}^t\le {\theta}_n^t{b}_n^t,{X}_{\mathrm{M}}^t{\mu}^t\ge {x}_{n\mathrm{M}}^t,\\ {}{X}_{\mathrm{S}}^t{\mu}^t\le {\theta}_n^t{x}_{n\mathrm{S}}^t,{X}_{\mathrm{M}}^t{\lambda}^t={X}_{\mathrm{M}}^t{\mu}^t,{X}_{\mathrm{S}}^t{\lambda}^t={X}_{\mathrm{S}}^t{\mu}^t,{\lambda}^{\prime t}\mathbb{1}=1,{\mu}^{\prime t}\mathbb{1}=1,\kern0.75em {\lambda}^t,{\mu}^t\ge 0.\end{array}} $$
(33)

The dual of this model at the representative observation (x0, y0, b0) can be written as follows:

$$ {\displaystyle \begin{array}{c}{\mathrm{D}}_{\mathrm{I}}^{\mathrm{E}}{\left({x}_0,{y}_0,{b}_0,{t}_0\right)}^{-1}=\underset{U,{V}_{\mathrm{S}},W,{Z}_{\mathrm{S}},{D}_{\mathrm{M}},{D}_{\mathrm{S}},\delta, \sigma }{\max }{U}^{\prime }{y}_0+\delta +\sigma, \\ {}\mathrm{s}.\mathrm{t}.\kern0.5em {U}^{\prime }Y-{V}_{\mathrm{S}}^{\prime }{X}_{\mathrm{S}}+{D}_{\mathrm{M}}^{\prime }{X}_{\mathrm{M}}+{D}_{\mathrm{S}}^{\prime }{X}_{\mathrm{S}}+\delta \le 0,\\ {}\begin{array}{c}-{W}^{\prime }B-{Z}_{\mathrm{S}}^{\prime }{X}_{\mathrm{S}}-{D}_{\mathrm{M}}^{\prime }{X}_{\mathrm{M}}-{D}_{\mathrm{S}}^{\prime }{X}_{\mathrm{S}}+\sigma \le 0,\\ {}{V}_{\mathrm{S}}^{\prime }{x}_{0\mathrm{S}}+{W}^{\prime }{b}_0+{Z}_{\mathrm{S}}^{\prime }{x}_{0\mathrm{S}}=1,\\ {}U,{V}_{\mathrm{S}},W,{Z}_{\mathrm{S}}\ge 0,\kern0.5em {D}_{\mathrm{M}},{D}_{\mathrm{S}},\delta, \sigma\ \mathrm{unrestricted}.\end{array}\end{array}} $$
(34)

This dual formulation can be rearranged into

$$ {\displaystyle \begin{array}{c}{D}_{\mathrm{I}}^{\mathrm{E}}{\left({x}_0,{y}_0,{b}_0,{t}_0\right)}^{-1}=\underset{U,{V}_{\mathrm{S}},W,{Z}_{\mathrm{S}},{D}_{\mathrm{M}},{D}_{\mathrm{S}},\delta, \sigma }{\max }{U}^{\prime }{y}_0+\delta +\sigma, \\ {}\mathrm{s}.\mathrm{t}.\kern0.5em {U}^{\prime }Y+{D}_{\mathrm{M}}^{\prime }{X}_{\mathrm{M}}-\left({V}_{\mathrm{S}}^{\prime }-{D}_{\mathrm{S}}^{\prime}\right){X}_{\mathrm{S}}+\delta \le 0,\\ {}\begin{array}{c}-{W}^{\prime }B-{D}_{\mathrm{M}}^{\prime }{X}_{\mathrm{M}}-\left({Z}_{\mathrm{S}}^{\prime }+{D}_{\mathrm{S}}^{\prime}\right){X}_{\mathrm{S}}+\sigma \le 0,\\ {}\left({V}_{\mathrm{S}}^{\prime }+{Z}_{\mathrm{S}}^{\prime}\right){x}_{0\mathrm{S}}+{W}^{\prime }{b}_0=1,\\ {}U,{V}_{\mathrm{S}},W,{Z}_{\mathrm{S}}\ge 0,\kern0.5em {D}_{\mathrm{M}},{D}_{\mathrm{S}},\delta, \sigma\ \mathrm{unrestricted}.\end{array}\end{array}} $$
(35)

The previous program is the linearization of the following fractional program

$$ {\mathrm{D}}_{\mathrm{I}}^{\mathrm{E}}\left({x}_0,{y}_0,{b}_0,{t}_0\right)=\mathcal{A}\left({X}_{0\mathrm{S}},{Y}_0\right)=\frac{\left({V}_{\mathrm{S}}^{\prime }+{Z}_{\mathrm{S}}^{\prime}\right){x}_{0\mathrm{S}}+{W}^{\prime }{b}_0}{U^{\prime }{y}_0+\delta +\sigma }. $$
(36)

From (36), we can then derive the cost-deflated shadow price associated with each input s and bad output as:

$$ \frac{\partial {\mathrm{D}}_{\mathrm{I}}^{\mathrm{E}}\left({x}_0,{y}_0,{b}_0,{t}_0\right)}{\partial {x}_{0\mathrm{S}}}={\mathcal{w}}_{0\mathrm{S}}=\frac{V_{\mathrm{S}}+{Z}_{\mathrm{S}}}{U^{\prime }{y}_0+\delta +\sigma }, $$
(37)
$$ \frac{\partial {\mathrm{D}}_{\mathrm{I}}^{\mathrm{E}}\left({x}_0,{y}_0,{b}_0,{t}_0\right)}{\partial {b}_0}={\mathfrak{R}}_0=\frac{W}{U^{\prime }{y}_0+\delta +\sigma }. $$
(38)

The aggregated environmental input of each decision-making unit n can be determined as:

$$ \mathcal{A}\left({X}_{n\mathrm{S}},{B}_n\right)={\mathcal{w}}_{0S}^{\prime }{x}_{n\mathrm{S}}+{\mathfrak{R}}_0^{\prime }{b}_n. $$
(39)

As in the output case, the non-zero shadow prices can be estimated using the full-dimensional efficient facets strategy and the reduced hyperplane equation in (23). The reduced form of the hyperplane associated to the input orientation is displayed in (40):

$$ {U}^{\prime }Y-{W}^{\prime }B-\left({V}_{\mathrm{S}}^{\prime }+{Z}_{\mathrm{S}}^{\prime}\right){X}_{\mathrm{S}}+\delta +\sigma =0. $$
(40)

Appendix 2: Productivity Changes and Decomposition

Table 2 Changes of pollution-adjusted productivity and components over the period 1990–2013: averages for the 49 farms
Table 3 Changes in classic productivity and components between 1990 and 2013: averages for the 49 farms

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakpo, K.H., Jeanneaux, P. & Latruffe, L. Pollution-Adjusted Productivity Changes: Extending the Färe–Primont Index with an Illustration with French Suckler Cow Farms. Environ Model Assess 24, 625–639 (2019). https://doi.org/10.1007/s10666-019-09656-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-019-09656-y

Keywords

JEL Classification

Navigation