Skip to main content
Log in

On Use of Expanding Parameters and Auxiliary Term in Homotopy Perturbation Method for Boussinesq Equation with Tidal Condition

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

This paper uses the homotopy perturbation method for the analytical solution of groundwater table fluctuations, in response to the tidal boundary condition, for a coastal unconfined aquifer with sloping beach face. The Boussinesq equation for sloping beach contains two non-linear terms. The governing equation is reconstructed in homotopic form with two virtual perturbation parameters and an auxiliary term. The secular terms generated from the non-linear diffusion term and the slope term are eliminated by using parameter expansions based on two virtual parameters. Two non-dimensional parameters emerge from the solution in the process of eliminating secular terms: (i) parameter equivalent to amplitude parameter and (ii) parameter representing beach slope. The second-order (starting from zeroth-order) solution is presented. The higher-order solution efficiently captures the non-linearity of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Parlange, J.Y., Stagnitti, F., Starr, J.L., Braddock, R.D. (1984). Free-surface flow in porous media and periodic solution of the shallow-flow approximation. Journal of Hydrology, 70, 251–263.

    Article  Google Scholar 

  2. Nielsen, P. (1990). Tidal dynamics of the water table in beaches. Water Resources Research, 26(9), 2127–2134.

    Google Scholar 

  3. Song, Z., Li, L., Kong, J., Zhang, H. (2007). A new analytical solution of tidal water table fluctuations in a coastal unconfined aquifer. Journal of Hydrology, 340(3-4), 256–260. ISSN 00221694.

    Article  Google Scholar 

  4. Kong, J., Song, Z., Xin, P., Shen, C. (2011). A new analytical solution for tide-induced groundwater fluctuations in an unconfined aquifer with a sloping beach. China Ocean Engineering, 25(3), 479–494. ISSN 0890-5487.

    Article  Google Scholar 

  5. Jha, M.K., & Singh, A. (2014). Application of genetic algorithm technique to inverse modeling of tide-aquifer interaction. Environmental Earth Sciences, 71(8), 3655–3672. ISSN 18666299. https://doi.org/10.1007/s12665-013-2758-4.

    Article  Google Scholar 

  6. Li, L., Barry, D.A., Stagnitti, F., Parlange, J., Jeng, D. (2000). Beach water table fluctuations due to spring-neap tides: moving boundary effects, vol. 23, pp. 817–824.

  7. Teo, H.T., Jeng, D.S., Seymour, B.R., Barry, D.A., Li, L. (2003). A new analytical solution for water table fluctuations in coastal aquifers with sloping beaches. Advances in Water Resources, 26(12), 1239–1247. ISSN 03091708.

    Article  Google Scholar 

  8. Jeng, D.-S., Barry, D.A., Seymour, B.R., Dong, P., Li, L. (2005a). Two-dimensional approximation for tide-induced watertable fluctuations in a sloping sandy beach. Advances in Water Resources, 28(10), 1040–1047. ISSN 03091708.

  9. Jeng, D.S., Seymour, B.R., Barry, D.A., Parlange, J.Y., Lockington, D.A., Li, L. (2005b). Steepness expansion for free surface flows in coastal aquifers. Journal of Hydrology, 309(2005), 85–92. ISSN 00221694.

  10. Roberts, M.E., Trefry, M.G., Fowkes, N., Bassom, A.P., Abbott, P.C. (2011). Water-table response to tidal forcing at sloping beaches. Journal of Engineering Mathematics, 69, 291–311. ISSN 00220833.

    Article  CAS  Google Scholar 

  11. Liu, P.L.-F., & Wen, J. (1997). Nonlinear diffusive surface waves in porous media. Journal of Fluid Mechanics, 347, 119–139. ISSN 00221120.

    Article  CAS  Google Scholar 

  12. Stojsavljevic, J.D., Jeng, D.S., Seymour, B.R., Pokrajac, D. (2012). Higher order analytical solutions of water table fluctuations in coastal aquifers. Ground Water, 50(2), 301–307. ISSN 0017467X. https://doi.org/10.1111/j.1745-6584.2011.00820.x.

    Article  CAS  Google Scholar 

  13. Yeh, H.D., Huang, C.S., Chang, Y.C., Jeng, D.S. (2010). An analytical solution for tidal fluctuations in unconfined aquifers with a vertical beach. Water Resources Research, 46(10), 1–12. ISSN 00431397. https://doi.org/10.1029/2009WR008746.

    Article  Google Scholar 

  14. Dagan, G. (1967). Second-order theory of shallow free-surface flow in porous media. The Quarterly Journal of Mechanics and Applied Mathematics, 20(4), 517–526.

    Article  Google Scholar 

  15. Liao, J.S.H. (1992). The proposed homotopy analysis technique for the solution of nonlinear problems. PhD thesis, Ph. D, thesis, Shanghai Jiao Tong University.

  16. Liao, S. (2004). On the homotopy analysis method for nonlinear problems. Applied Mathematics and Computation, 147(2), 499–513. ISSN 0096-3003. https://doi.org/10.1016/S0096-3003(02)00790-7.

    Article  Google Scholar 

  17. Liao, S. (1997). Homotopy analysis method: a new analytical technique for nonlinear problems. Communications in Nonlinear Science and Numerical Simulation, 2(2), 95–100. ISSN 1007-5704. https://doi.org/10.1016/S1007-5704(97)90047-2.

    Article  Google Scholar 

  18. Zhu, J., Zheng, L.-C., Zhang, X.-X. (2009). Analytical solution to stagnation-point flow and heat transfer over a stretching sheet based on homotopy analysis. Applied Mathematics and Mechanics, 30(4), 463–474. ISSN 1573-2754. https://doi.org/10.1007/s10483-009-0407-2.

    Article  Google Scholar 

  19. Nadeem, S., & Hussain, A. (2009). Mhd flow of a viscous fluid on a nonlinear porous shrinking sheet with homotopy analysis method. Applied Mathematics and Mechanics, 30(12), 1569–1578. ISSN 1573-2754. https://doi.org/10.1007/s10483-009-1208-6.

    Article  Google Scholar 

  20. Si, X.-Y., Si, X.-H., Zheng, L.-C., Zhang, X.-X. (2011). Homotopy analysis solution for micropolar fluid flow through porous channel with expanding or contracting walls of different permeabilities. Applied Mathematics and Mechanics, 32(7), 859–874. ISSN 1573-2754. https://doi.org/10.1007/s10483-011-1465-6.

    Article  Google Scholar 

  21. He, J.H. (1999). Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering, 178, 257–262.

    Article  Google Scholar 

  22. He, J.-H. (2000). A coupling method of a homotopy technique and a perturbation technique for non-linear problems. International Journal of Non-Linear Mechanics, 35(1), 37–43. ISSN 0020-7462. https://doi.org/10.1016/S0020-7462(98)00085-7. http://www.sciencedirect.com/science/article/pii/S0020746298000857.

    Article  Google Scholar 

  23. He, J.-H. (2003). Homotopy perturbation method: a new nonlinear analytical technique. Applied Mathematics and Computation, 135 (1), 73–79. ISSN 0096-3003. https://doi.org/10.1016/S0096-3003(01)00312-5.

    Article  Google Scholar 

  24. He, J.H. (2012). Homotopy perturbation method with an auxiliary term. Abstract and Applied Analysis, 2012 (January), 1–7. ISSN 10853375.

    Google Scholar 

  25. Munusamy, S.B., & Dhar, A. (2016). Homotopy perturbation method-based analytical solution for tide-induced groundwater fluctuations. Groundwater, 54(3), 440–447. ISSN 1745-6584. https://doi.org/10.1111/gwat.12371.

    Article  CAS  Google Scholar 

  26. Munusamy, S.B., & Dhar, A. (2017). Analytical solution of groundwater waves in unconfined aquifers with sloping boundary. Sadhana - Academy Proceedings in Engineering Sciences, 42(9), 1–8. ISSN 09737677. https://doi.org/10.1007/s12046-017-0695-8.

    Google Scholar 

  27. He, J.H. (2014). Homotopy perturbation method with two expanding parameters. Indian Journal of Physics, 88(2), 193–196. ISSN 0973-1458.

    Article  CAS  Google Scholar 

  28. Diersch, H.-J. (2013). FEFLOW: finite element modeling of flow, mass and heat transport in porous and fractured media. Springer Science & Business Media, Berlin.

  29. Van Genuchten, M.T.H. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1. Soil Science Society of America Journal, 44(5), 892. ISSN 0361-5995.

    Article  Google Scholar 

  30. Carsel, R.F., & Parrish, R.S. (1988). Developing joint probability distributions of soil water retention characteristics. Water Resources Research, 24 (5), 755–769. ISSN 00431397. https://doi.org/10.1029/WR024i005p00755.

    Article  Google Scholar 

Download references

Funding

This study is supported by Science and Engineering Research Board (Grant Number: SB/FTP/ETA-0356/2013) under the Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Dhar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(TEX 7.82 KB)

Appendix: Secular Terms Removal from Inhomogeneous Terms

Appendix: Secular Terms Removal from Inhomogeneous Terms

Solution for the \({p_{1}^{0}} {p_{2}^{0}}\) (15) is given by

$$ h_{0,0}(x^{*},t)= D+ A exp(-k_{1} x^{*}) \cos[\omega t- k_{1} x^{*}]. $$
(35)

By substituting (35) in the expression (18), the inhomogeneous term (I1,0) can be written as

$$\begin{array}{@{}rcl@{}} I_{1,0}\!&=&\!\frac{A^{2} {k_{1}^{2}} K}{\eta_{e}}\left\{\mathit{exp}(-2 k_{1} x^{*})-2exp(-2 k_{1} x^{*}){\sin}[2 {\omega} t- 2 k_{1} x^{*}]\right\}\\ &&+\frac{2 A {k_{1}^{2}} }{\eta_{e}}[K D-\eta_{e} {\Gamma}_{1,0}] \underbrace{exp(- k_{1} x^{*})\sin[\omega t- k_{1} x^{*}]}_{secular term}. \end{array} $$
(36)

Requirement of no secular term in inhomogeneous term \(I_{1,0}\) needs

$$ {\Gamma}_{1,0}=\frac{K D }{\eta_{e}}. $$
(37)

If \({\Gamma }_{0,0}\) is replaced with \({\Gamma }_{1,0}\) from expression (37), Eq. 15 represents linearized Boussinesq equation. Particular integral for the \({p_{1}^{1}} {p_{2}^{0}}\) equation is given as

$$\begin{array}{@{}rcl@{}} h_{1,0}^{PI}(x^{*},t)&=&-\frac{A^{2} {k_{1}^{2}} K }{2{ \eta}_{e} {\omega}} exp(-2 k_{1} x^{*})\\ &&\times\left\{1 + 2 {\cos}[2 {\omega} t - 2 k_{1} x^{*}]\right\}. \end{array} $$
(38)

Boundary condition can be satisfied by expressing the solution \(h_{1,0}\) as addition of particular integral [\(h_{1,0}^{PI}\)] and complementary function (\(h_{1,0}^{CF}\)),

$$\begin{array}{@{}rcl@{}} h_{1,0}(0,t)&=&h_{1,0}^{PI}(0,t)+h_{1,0}^{CF}(0,t)= 0, \end{array} $$
(39)
$$\begin{array}{@{}rcl@{}} h_{1,0}^{CF}(x^{*},t)&=&\frac{A^{2} {k_{1}^{2}} K}{2 \eta_{e} \omega}\{1 + 2 exp(-\sqrt{2} k_{1} x^{*})\\&&\times \cos[2 \omega t-\sqrt{2} k_{1} x^{*}]\}. \end{array} $$
(40)

Solution for the \({p_{1}^{1}}{p_{2}^{0}}\) equation (h1,0) can be given as

$$\begin{array}{@{}rcl@{}} \mathit{h}_{1,0}(\mathit{x}^{*},\mathit{t})\!&=&\!\frac{A^{2} {k_{1}^{2}} K}{2 \eta_{e} \omega} \left\{1-exp(-2 k_{1} x^{*})\right.\\ &&\!-2\ \mathit{exp}(-2 k_{1} x^{*}) \cos[2\omega t- 2 k_{1} x^{*}]\\ &&\left.\!+ 2 \mathit{exp}(-\sqrt{2} k_{1} x^{*}) \cos[2 \omega t-\sqrt{2} k_{1} x^{*}]\right\}. \end{array} $$
(41)

By substituting (41) in Eq. (21), the inhomogeneous term \(I_{0,1}\) is given by

$$\begin{array}{@{}rcl@{}} I_{0,1}&=&\frac{A k_{1} s_{p} exp(-k_{1} x^{*})}{2}\{-\cos[k_{1} x^{*}]\\&&+\cos[2\omega t-k_{1} x^{*}]\\ &&+\sin[k_{1} x^{*}]+\sin[2 \omega t-k_{1} x^{*}]\}\\ &&+ 2 A {k_{1}^{2}} {\Gamma}_{0,1} exp(-k_{1} x^{*}) \sin[\omega t- k_{1} x^{*}]\\ &&+\alpha_{0,0}f(x,t). \end{array} $$
(42)

Eliminating the secular term in particular integral by forcing the coefficient of secular term to zero,

$$\begin{array}{@{}rcl@{}} {\Gamma}_{0,1}&=&0, \end{array} $$
(43)
$$\begin{array}{@{}rcl@{}} \alpha_{0,0}&=&0. \end{array} $$
(44)

Solution for the \({p_{1}^{0}}{p_{2}^{1}}\) equation (h0,1) can be obtained as

$$\begin{array}{@{}rcl@{}} h_{0,1}(x^{*},t)\!&=&\!\frac{A k_{1} s_{p}}{2 \omega}\left\{1-exp(-k_{1} x^{*})\cos[k_{1} x^{*}]\right.\\ &&\!-exp(-k_{1} x^{*})\cos[2 \omega t-k_{1} x^{*}]\\ &&\!+exp(-\sqrt{2} k_{1} x^{*})\cos[2 \omega t-\sqrt{2} k_{1} x^{*}]\\ &&\!-exp(-k_{1} x^{*})\sin[k_{1} x^{*}]\\ &&\!+exp(-k_{1} x^{*})\sin[2\omega t-k_{1} x^{*}]\\ &&\left.\!-exp(-\sqrt{2} k_{1} x^{*})\sin[2\omega t-\sqrt{2} k_{1} x^{*}]\right\}. \end{array} $$
(45)

Expressions of the inhomogeneous terms \(I_{2,0}\), \(I_{1,1}\), and \(I_{0,2}\) are provided in the Supplementary Material for brevity. By eliminating secular terms from \(I_{2,0}\), the expressions for \({\Gamma }_{2,0}\) and \(\alpha _{0,0}\) can be obtained as

$$\begin{array}{@{}rcl@{}} {\Gamma}_{2,0}&=&\frac{A^{2} {k_{1}^{2}} K^{2}}{2 {\eta_{e}^{2}} \omega}, \end{array} $$
(46)
$$\begin{array}{@{}rcl@{}} \alpha_{0,0}&=&0. \end{array} $$
(47)

Solution for the \({p_{1}^{2}} {p_{2}^{0}}\) equation (h2,0) can be given as

$$\begin{array}{@{}rcl@{}} &&h_{2,0}(x^{*},t)\\ &\!\!=&\frac{A^{3} {k_{1}^{4}} K^{2}}{{\eta_{e}^{2}} \omega^{2}}\left\{\frac{3}{2}exp(-3 k_{1} x^{*})\cos[3 \omega t- 3 k_{1} x^{*}]\right.\\ &&-\frac{1}{4} (4 + 3\sqrt{2})exp\left[\!-(1+\sqrt{2}) k_{1} x^{*}\right]\cos[3 \omega t-(1+\sqrt{2}) k_{1} x^{*}]\\ &&+\frac{1}{4} (-2 + 3\sqrt{2})exp(-\sqrt{3} k_{1} x^{*})\cos[3 \omega t-\sqrt{3} k_{1} x^{*}]\\ &&+\frac{11}{5}exp\left( -3 k_{1} x^{*}\right)\cos\left[\omega t- k_{1} x^{*}\right]\\ &&-\frac{6}{5}exp(-k_{1} x^{*})\cos[\omega t-k_{1} x^{*}]\\ &&-exp[-(1+\sqrt{2}) k_{1} x^{*}] \cos[\omega t+(1-\sqrt{2}) k_{1} x^{*}]\\ &&+\frac{2}{5}exp(-3 k_{1} x^{*})\sin[\omega t-k_{1} x^{*}]\\ &&-\frac{1}{20}(-8 + 5\sqrt{2})exp(-k_{1} x^{*})\sin[\omega t-k_{1} x^{*}]\\ &&\left.+\frac{1}{2\sqrt{2}}exp(-(1+\sqrt{2}) k_{1} x^{*})\sin[\omega t+(1-\sqrt{2}) k_{1} x^{*}]\right\}. \end{array} $$
(48)

By substituting (35), (41), and (45) in Eq. 27 and eliminating the secular terms (by forcing the coefficient of secular terms to zero) in \(I_{1,1}\),

$$\begin{array}{@{}rcl@{}} {\Gamma}_{1,1}&=&\frac{A k_{1} K s_{p}}{2 \eta_{e} \omega}, \end{array} $$
(49)
$$\begin{array}{@{}rcl@{}} \alpha_{1,0}&=&0. \end{array} $$
(50)

Solution for the \({p_{1}^{1}} {p_{2}^{1}}\) equation (h1,1) can be given as

$$\begin{array}{@{}rcl@{}} &&h_{1,1}(x^{*},t)\\ &=&\frac{A^{2} {k_{1}^{3}} K s_{p}}{\eta_{e} \omega^{2}}\left\{\vphantom{\sqrt{2}}exp(-2 k_{1} x^{*})\cos[ \omega t]\right.\\&&+exp(-2 k_{1} x^{*})\cos[3 \omega t-2 k_{1} x^{*}]\\ &&-\frac{1}{\sqrt{2}} exp(-\sqrt{2} k_{1} x^{*})\cos[3 \omega t-\sqrt{2} k_{1} x^{*}]\\ &&+\frac{1}{8}(-4 + 7\sqrt{2})exp(-\sqrt{3} k_{1} x^{*})\cos[3 \omega t- \sqrt{3} k_{1} x^{*}]\\ &&-\frac{1}{8}(4 + 3\sqrt{2})exp[-(1+\sqrt{2}) k_{1} x^{*}]\cos[3 \omega t\\&&-(1+\sqrt{2}) k_{1} x^{*}]\\ &&+\frac{3}{8}(-4+\sqrt{2})exp(- k_{1} x^{*}) \cos[\omega t- k_{1} x^{*}] \end{array} $$
$$\begin{array}{@{}rcl@{}} &&+exp(-2 k_{1} x^{*})\cos[\omega t-2 k_{1} x^{*}]\\ &&-\frac{1}{\sqrt{2}}exp(-\sqrt{2} k_{1} x^{*})\cos[\omega t-\sqrt{2} k_{1} x^{*}]\\ &&+\frac{1}{8}(-4+\sqrt{2})exp(-(1+\sqrt{2}) k_{1} x^{*})\cos[\omega t\\&&+(1-\sqrt{2}) k_{1} x^{*}]\\ &&-exp(-2 k_{1} x^{*})\sin[3 \omega t-2 k_{1} x^{*}]\\ &&+\frac{1}{\sqrt{2}}exp(-\sqrt{2} k_{1} x^{*})\sin[3 \omega t-\sqrt{2} k_{1} x^{*}]\\ &&-\frac{1}{8}(-4 + 7\sqrt{2})exp(-\sqrt{3} k_{1} x^{*})\sin[3 \omega t-\sqrt{3} k_{1} x^{*}]\\ &&+\frac{1}{8}(4 + 3\sqrt{2})exp[-(1+\sqrt{2}) k_{1} x^{*}]\sin[3 \omega t\\&&-(1+\sqrt{2}) k_{1} x^{*}]\\ &&-\frac{1}{8}(-4 + 5\sqrt{2})exp(-k_{1} x^{*})\sin[\omega t-k_{1} x^{*}]\\ &&-exp(-2 k_{1} x^{*})\sin[\omega t-2 k_{1} x^{*}]\\ &&+\frac{1}{\sqrt{2}}exp(-\sqrt{2} k_{1} x^{*})\sin[\omega t-\sqrt{2} k_{1} x^{*}]\\ &&+\frac{1}{8}(4+\sqrt{2})exp^{-(1+\sqrt{2}) k_{1} x^{*}}\sin[\omega t\\&&\left.+(1-\sqrt{2}) k_{1} x^{*}]\right\}. \end{array} $$
(51)

Solution for the \({p_{1}^{0}} {p_{2}^{2}}\) order can be given as

$$\begin{array}{@{}rcl@{}} \mathit{h}_{0,2}(\mathit{x}^{*},\mathit{t})\!&=&\!\frac{A {k_{1}^{2}} {s_{p}^{2}}}{\omega^{2}}\left\{-\frac{1}{4}exp(-k_{1} x^{*})\sin[ 3 \omega t- k_{1} x^{*}]\right.\\ &&\!+\frac{1}{\sqrt{2}}exp(-\sqrt{2} k_{1} x^{*})\sin[3 \omega t-\sqrt{2} k_{1} x^{*}]\\ &&\!-\frac{1}{4}(-1 + 2\sqrt{2}) exp(-\sqrt{3} k_{1} x^{*})\\&&\!\times\sin[3 \omega t-\sqrt{3} k_{1} x^{*}]\\ &&\!-\frac{1}{\sqrt{2}}exp(-k_{1} x^{*})\sin[ \omega t- k_{1} x^{*}]\\ &&\!+\frac{1}{\sqrt{2}}\mathit{exp}(-\sqrt{2} k_{1} x^{*})\\&&\left.\times\sin[ \omega t-\sqrt{2} k_{1} x^{*}]\vphantom{\frac{1}{4}}\right\}. \end{array} $$
(52)

By substituting (35) and (45) in Eq. 30 and eliminating the secular term \(exp(-k_{1} x^{*})\sin [\omega t-k_{1} x^{*}]\) from inhomogeneous term \(I_{0,2}\),

$$ {\Gamma}_{0,2}= 0. $$
(53)

There is a new secular term \(exp(-k_{1} x^{*})\cos [\omega t+k_{1} x^{*}]\) present in the inhomogeneous term \(I_{0,2}\). By defining \(f(x,t)\) and eliminating it by forcing its coefficient to zero, \(\alpha _{0,1}\) can be obtained as

$$\begin{array}{@{}rcl@{}} f(x,t)&=&exp(-k_{1} x^{*})\cos[\omega t+k_{1} x^{*}], \end{array} $$
(54)
$$\begin{array}{@{}rcl@{}} \alpha_{0,1}&=&-\frac{A {k_{1}^{2}} {s_{p}^{2}}}{2 \omega}. \end{array} $$
(55)

Groundwater fluctuation due to tidal oscillations for a coastal aquifer with vertical beach face is given as

$$\begin{array}{@{}rcl@{}} h(x^{*},t)\!&=&\! D+ A exp(-k_{1} x^{*}) \cos[\omega t- k_{1} x^{*}]\\ &&\!\times\frac{A^{2} {k_{1}^{2}} K}{2 \eta_{e} \omega} \left\{1-exp(-2 k_{1} x^{*})\right.\\ &&\!-2 exp(-2 k_{1} x^{*}) \cos[2\omega t- 2 k_{1} x^{*}]\\ &&\left.\!+ 2 exp(-\sqrt{2} k_{1} x^{*}) \cos[2 \omega t-\sqrt{2} k_{1} x^{*}]\right\}\\ &&\!+\frac{A^{3} {k_{1}^{4}} K^{2}}{{\eta_{e}^{2}} \omega^{2}}\left\{\frac{3}{2}exp(-3 k_{1} x^{*})\cos[3 \omega t- 3 k_{1} x^{*}]\right.\\ &&\!\!-\frac{1}{4} (4 + 3\sqrt{2})exp[-(1+\sqrt{2}) k_{1} x^{*}]\\&&\cos[3 \omega t-(1+\sqrt{2}) k_{1} x^{*}]\\ &&\!+\frac{1}{4} (-2 + 3\sqrt{2})exp(-\sqrt{3} k_{1} x^{*})\cos[3 \omega t-\sqrt{3} k_{1} x^{*}]\\ &&\!+\frac{11}{5}exp(-3 k_{1} x^{*})\cos[\omega t- k_{1} x^{*}]\\ &&\!-\frac{6}{5}exp(-k_{1} x^{*})\cos[\omega t-k_{1} x^{*}]\\ &&\!-exp[-(1+\sqrt{2}) k_{1} x^{*}] \cos[\omega t+(1-\sqrt{2}) k_{1} x^{*}]\\ &&\!+\frac{2}{5}exp(-3 k_{1} x^{*})\sin[\omega t-k_{1} x^{*}]\\ &&\!-\frac{1}{20}(-8 + 5\sqrt{2})exp(-k_{1} x^{*})\sin[\omega t-k_{1} x^{*}]\\ &&\!+\frac{1}{2\sqrt{2}}exp(-(1+\sqrt{2}) k_{1} x^{*})\\&&\left.\sin[\omega t+(1-\sqrt{2}) k_{1} x^{*}]\vphantom{\frac{1}{2\sqrt{2}}}\right\}. \end{array} $$
(56)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munusamy, S.B., Dhar, A. On Use of Expanding Parameters and Auxiliary Term in Homotopy Perturbation Method for Boussinesq Equation with Tidal Condition. Environ Model Assess 24, 109–120 (2019). https://doi.org/10.1007/s10666-018-9636-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-018-9636-0

Keywords

Navigation