Skip to main content
Log in

Spatiotemporal linear stability of viscoelastic subdiffusive channel flows: a fractional calculus framework

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The temporal and spatiotemporal linear stability analyses of viscoelastic, subdiffusive, plane Poiseuille flow obeying the Fractional Upper Convected Maxwell (FUCM) equation in the limit of low to moderate Reynolds number (Re) and Weissenberg number (We) is reported to identify the regions of topological transition of the advancing flow interface. In particular, we demonstrate how the exponent of the power-law scaling (\(t^\alpha \), with \(0 < \alpha \le 1\)) in viscoelastic microscale models (Mason and Weitz in Phys Rev Lett 74:1250–1253, 1995) is related to the fractional order of the time derivative, \(\alpha \), of the corresponding non-linear stress constitutive equation in the continuum. The stability studies are limited to two exponents: monomer diffusion in Rouse chain melts, , and in Zimm chain solutions, . The temporal stability analysis indicates that with decreasing order of the fractional derivative (a) the most unstable mode decreases with decreasing values of \(\alpha \), (b) the peak of the most unstable mode shifts to lower values of Re, and (c) the peak of the most unstable mode, for the Rouse model precipitates towards the limit \(Re \rightarrow 0\). The Briggs idea of analytic continuation is deployed to classify regions of temporal stability, absolute and convective instabilities, and evanescent modes. The spatiotemporal phase diagram indicates an abnormal region of temporal stability at high fluid inertia, revealing the presence of a non-homogeneous environment with hindered flow, thus highlighting the potential of the model to effectively capture certain experimentally observed, flow-instability transition in subdiffusive flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goychuk I, Pöschel T (2020) Hydrodynamic memory can boost enormously driven nonlinear diffusion and transport. Phys Rev E 102(1):012139

    Article  MathSciNet  Google Scholar 

  2. Goychuk I, Pöschel T (2021) Fingerprints of viscoelastic subdiffusion in random environments: revisiting some experimental data and their interpretations. Phys Rev E 104(3):034125

    Article  Google Scholar 

  3. Sircar S, Roberts A (2016) Ion mediated crosslink driven mucous swelling kinetics. DCDS-B 21(6):1937–1951

    Article  MathSciNet  MATH  Google Scholar 

  4. Coffey WT, Kalmykov PY, Waldron J (2004) The Langevin equation: with applications to stochastic problems in Physics, Chemistry and Electrical Engineering, 3rd edn. World Scientific Series in Contemporary Chemical Physics, vol. 27. World Scientific, Singapore

  5. Rubenstein M, Colby RH (2003) Polymer Physics. Oxford University Press, New York

    Google Scholar 

  6. Sircar S, Wang Q (2009) Dynamics and rheology of biaxial liquid crystal polymers in shear flows. J Rheol 53(4):819–858

    Article  Google Scholar 

  7. Kremer K, Grest GS (1990) Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J Chem Phys 92(8):5057–5086

    Article  Google Scholar 

  8. Kou SC, Xie XS (2004) Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule. Phys Rev Lett 93(18):180603

    Article  Google Scholar 

  9. Morgado R, Oliveira FA, Batrouni GG, Hansen A (2002) Relation between anomalous and normal diffusion in systems with memory. Phys Rev Lett 89(10):100601

    Article  Google Scholar 

  10. Vainstein MH, Lapas LC, Oliveira FA (2008) Anomalous diffusion. Technical Report

  11. Adelman SA (1976) Fokker–Planck equations for simple non-Markovian systems. J Chem Phys 64(1):124–130

    Article  MathSciNet  Google Scholar 

  12. Gemant A (1938) XLV. On fractional differentials. Lond Edinb Dublin Philos Mag J Sci 25(168):540–549

    Article  MATH  Google Scholar 

  13. Scott-Blair GW (1944) Analytical and integrative aspects of the stress-strain-time problem. J Sci Instr 21(5):80–84

    Article  Google Scholar 

  14. Scott-Blair GW (1947) The role of psychophysics in rheology. J Coll Sci 2(1):21–32

    Article  Google Scholar 

  15. Caputo M (1967) Linear models of dissipation whose Q is almost frequency independent-II. Geophys J Int 13(5):529–539

    Article  Google Scholar 

  16. Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27(3):201–210

    Article  MATH  Google Scholar 

  17. Rouse PE (1953) A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys 21(7):1272–1280

    Article  Google Scholar 

  18. Tan W, Xu M (2002) Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model. Acta Mech 18(4):342–349

    Article  MathSciNet  Google Scholar 

  19. Qi M, Xu M (2009) Some unsteady unidirectional flows of a generalized oldroyd-b fluid with fractional derivative. Appl Math Model 33:4184–4191

    Article  MathSciNet  MATH  Google Scholar 

  20. Fetecau C, Fetecau C, Kamran M, Vieru D (2009) Exact solutions for the flow of a generalized oldroyd-b fluid induced by a constantly accelerating plate between two side walls perpendicular to the plate. J Non-Newt Fluid Mech 189–201

  21. Zheng L, Liu Y, Zhang X (2012) Slip effects on mhd flow of a generalized oldroyd-b fluid with fractional derivative. Nonlinear Anal RWA 13:513–523

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhao J, Zheng L, Zhang X, Liu F (2016) Unsteady natural convection boundary layer heat transfer of fractional Maxwell viscoelastic fluid over a vertical plate. Int J Heat Mass Transfer 47:760–766

    Article  Google Scholar 

  23. Ancey C (2020) Bedload transport: a walk between randomness and determinism. Part 1. The state of the art. J Hydraul Res 58:1–17

    Article  Google Scholar 

  24. Zaks MA, Nepomnyashchy A (2018) Subdiffusive and superdiffusive transport in plane steady viscous flows. Proc Natl Acad Sci 116(37):18245–18250

    Article  MathSciNet  MATH  Google Scholar 

  25. Khalid M, Chaudhary I, Garg P, Shankar V, Subramanian G (2021) The centre-mode instability of viscoelastic plane Poiseuille flow. J Fluid Mech 915:A43

    Article  MathSciNet  MATH  Google Scholar 

  26. Mason TG, Weitz DA (1995) Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys Rev Lett 74(7):1250–1253

    Article  Google Scholar 

  27. Mason TG, Gang H, Weitz DA (1996) Rheology of complex fluids measured by dynamic light scattering. J Mol Struct 383:81–90

    Article  Google Scholar 

  28. Zimm BH (1956) Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. J Chem Phys 24(2):269–278

    Article  MathSciNet  Google Scholar 

  29. Kirkwood JG (1954) The general theory of irreversible processes in solutions of macromolecules. J Polym Sci 12(1):1–14

    Article  Google Scholar 

  30. Schiessel H, Metzler R, Blumen A, Nonnenmacher TF (1995) Generalized viscoelastic models: their fractional equations with solutions. J Phys A 28:6567–6584

    Article  MATH  Google Scholar 

  31. Brader JM (2010) Nonlinear rheology of colloidal dispersions. J Phys 22:363101

    Google Scholar 

  32. McKinley S, Yao L, Forest MG (2009) Transient anomalous diffusion of tracer particles in soft matter. J Rheol 53(6):1487–1506

    Article  Google Scholar 

  33. Sircar S, Wang Q (2008) Shear-induced mesostructures in biaxial liquid crystals. Phys Rev E 78(6):061702

    Article  Google Scholar 

  34. Sircar S, Wang Q (2010) Transient rheological responses in sheared biaxial liquid crystals. Rheologica Acta 49(7):699–717

    Article  Google Scholar 

  35. Li J, Sircar S, Wang Q (2010) A note on the kinematics of rigid molecules in linear flow fields and kinetic theory for biaxial liquid crystal polymers. e-LC Commun

  36. Sircar S, Li J, Wang Q (2010) Biaxial phases of bent-core liquid crystal polymers in shear flows. Commun Math Sci 8(3):697–720

    Article  MathSciNet  MATH  Google Scholar 

  37. Sircar S (2010) A hydrodynamical kinetic theory for self-propelled ellipsoidal suspensions. Int J Emerg Multidiscp Fluid Sci 2(4)

  38. Sircar S, Younger JG, Bortz DM (2015) Sticky surface: sphere-sphere adhesion dynamics. J Biol Dyn 9:79–89

    Article  MathSciNet  MATH  Google Scholar 

  39. Sircar S, Aisenbrey E, Bryant SJ, Bortz DM (2015) Determining equilibrium osmolarity in poly (ethylene glycol)/chondrotin sulfate gels mimicking articular cartilage. J Theoret Biol 364:397–406

    Article  MATH  Google Scholar 

  40. Sircar S, Roberts AJ (2016) Surface deformation and shear flow in ligand mediated cell adhesion. J Math Biol 73(4):1035–1052

    Article  MathSciNet  MATH  Google Scholar 

  41. Sircar S, Nguyen G, Kotousov A, Roberts AJ (2016) Ligand-mediated adhesive mechanics of two static, deformed spheres. Eur Phys J E 39(10):1–9

    Article  Google Scholar 

  42. Sircar S, Bansal D (2019) Spatiotemporal linear stability of viscoelastic free shear flows: dilute regime. Phys Fluids 31(8):084104

    Article  Google Scholar 

  43. Singh S, Bansal D, Kaur G, Sircar S (2020) Implicit-explicit-compact methods for advection diffusion reaction equations. Comput Fluids 212:104709

    Article  MathSciNet  MATH  Google Scholar 

  44. Bansal D, Chauhan T, Sircar S (2022) Spatiotemporal linear stability of viscoelastic Saffman–Taylor flows. Phys Fluids 34(10)

  45. Bansal D, Ghosh D, Sircar S (2023) Selection mechanism in non-Newtonian Saffman-Taylor fingers. SIAM J Appl Math 83(2):329–353

    Article  MathSciNet  MATH  Google Scholar 

  46. Glockle WG, Nonnenmacher TF (1991) Fractional integral operators and Fox functions in the theory of viscoelasticity. Macromolecules 24:6426–6434

    Article  Google Scholar 

  47. Glockle WG, Nonnenmacher TF (1994) Fractional relaxation and the time-temperature superposition principle. Rheologica Acta 33:337–343

    Article  Google Scholar 

  48. Prodanov D (2018) Fractional velocity as a tool for the study of non-linear problems. Fractal Fract 2(1):2–23

    Article  Google Scholar 

  49. Prodanov D (2017) Conditions for continuity of fractional velocity and existence of fractional Taylor expansions. Chaos Solitons Fractals 102:236–244

    Article  MathSciNet  MATH  Google Scholar 

  50. Macosko CW (1994) Rheology: principles, measurements, and applications, 1st edn. Wiley, New York

    Google Scholar 

  51. Spagnolie SE (2015) Complex fluids in biological systems: experiment, theory, and computation. Springer, New York

    Book  MATH  Google Scholar 

  52. Jiménez AH, Santiago AMGJH, Gonzáles JS (2002) Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model. Polym Test 21:325–331

    Article  Google Scholar 

  53. Bansal D, Ghosh D, Sircar S (2021) Spatiotemporal linear stability of viscoelastic free shear flows: nonaffine response regime. Phys Fluids 33:054106

    Article  Google Scholar 

  54. Jaishankar A, McKinley GH (2014) A fractional k-bkz constitutive formulation for describing the nonlinear rheology of multiscale complex fluids. J Rheol 58(6):1751–1788

    Article  Google Scholar 

  55. Huerre P, Monkewitz PA (1990) Local and global instabilities in spatially developing flows. Annu Rev Fluid Mech 22:473–537

    Article  MathSciNet  MATH  Google Scholar 

  56. Briggs RJ (1964) Electron-stream interaction with plasmas. MIT Press, Cambridge

    Book  Google Scholar 

  57. Kupfer K, Bers A, Ram AK (1987) The cusp map in the complex-frequency plane for absolute instability. Phys Fluids 30(10):3075–3082

    Article  MathSciNet  Google Scholar 

  58. Atalik K, Keunings R (2002) Non-linear temporal stability analysis of viscoelastic plane channel flows using a fully-spectral method. J Non-Newt Fluid Mech 102:299–319

    Article  MATH  Google Scholar 

  59. Rabaud M, Couder Y, Gerard N (1988) Dynamics and stability of anomalous Saffman-Taylor fingers. Phys Rev A 37:935–947

    Article  Google Scholar 

  60. Larson RG (2000) Turbulence without inertia. Nature 405:27–28

    Article  Google Scholar 

  61. Riley JJ, Hak MG, Metcalfe RW (1988) Complaint coatings. Annu Rev Fluid Mech 20:393–420

    Article  Google Scholar 

  62. Nandagopalan P, John J, Baek SW, Miglani A, Ardhianto K (2018) Shear-flow rheology and viscoelastic instabilities of ethanol gel fuels. Exp Thermal Fluid Sci 99:181–189

    Article  Google Scholar 

  63. Zarabadi M (2019) Development of a robust microfluidic electrochemical cell for biofilm study in controlled hydrodynamic conditions. PhD thesis, Univ. Laval

  64. Zarabadi MP, Charette SJ, Greener J (2018) Flow-based deacidification of geobacter sulfurreducens biofilms depends on nutrient conditions: a microfluidic bioelectrochemical study. Chem Electrochem 5(23):3645–3653

    Google Scholar 

Download references

Acknowledgements

T. Chauhan, D. Bansal, and S. Sircar acknowledge the financial support of the Grant CSIR 09 /1117 (0012) /2020-EMR-I and DST ECR/2017/000632, respectively.

Author information

Authors and Affiliations

Authors

Contributions

TC and DB performed the simulation and analysis. SS formulated the problem. All authors reviewed the manuscript.

Corresponding author

Correspondence to Sarthok Sircar.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Viscoelastic dispersion relation

Appendix A: Viscoelastic dispersion relation

The expressions, \(M_i\), utilized in the viscoelastic dispersion relation outlined in Sect. 2.2, is given as

$$\begin{aligned} M_1&= (y\!-\!y^2) \left( \!Re (-\textrm{i} \omega )^\alpha \! +\! \textrm{i} k Re (y\!-\!y^2\!) \! -\! { 2} \nu (\textrm{i} k)^{2}\right) \! +\! { 2} \nu , \nonumber \\ M_2&= Re ( 1-2y) (y-y^2) - { \nu } (1-2y) (\textrm{i} k), \nonumber \\ M_3&= (y\!-\!y^2)\left( \! Re (-\textrm{i} \omega )^\alpha \!+\! \textrm{i} k Re (y\!-\!y^2)\! -\! { \nu } (\textrm{i}k)^{2}\!\right) \!+\! { 4} \nu , \nonumber \\ M_4&= (-\textrm{i} \omega )^\alpha + \textrm{i} k (y-y^2) + \frac{1}{We}, \nonumber \\ M_5&= { -\textrm{i} k} \left( 1-2y\right) (y-y^2) - { \frac{1}{ We}} \left( 1-2y \right) , \nonumber \\ M_6&=- { 2} (y-y^2) - { 2} \textrm{i} k We (1-2y)^2 (y-y^2) - \left( 1- 2y \right) ^2 - {\frac{1}{ We}} (y-y^2)(\textrm{i} k ) , \nonumber \\ M_7&= - {8 } We \left( 1-2y \right) (y-y^2) - { 4} We (1-2y)^3 -\frac{{ 2}(1-2y)}{We}. \end{aligned}$$
(A1)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, T., Bansal, D. & Sircar, S. Spatiotemporal linear stability of viscoelastic subdiffusive channel flows: a fractional calculus framework. J Eng Math 141, 8 (2023). https://doi.org/10.1007/s10665-023-10282-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-023-10282-7

Keywords

Navigation