Skip to main content
Log in

Dynamical responses of inclined heated channel of MHD dusty fluids through porous media

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

In this study, we analyze the unsteady laminar flow of two different layers of an incompressible, conducting Maxwell dusty fluids between two inclined parallel substrates, with heat transfer through porous media. Two constant but different temperatures are maintained at the lower and the upper planes. The dust particles are supposed to have a spherical form and uniform in size, and the number density of these is assumed to be constant during the flow process. The governing relations and the associated constraints give rise to the evaluation relations for the flow function and heat distribution, for the fluids and the dusty particles. In dealing with this issue, the long wave motion is considered for small wave numbers. The stability process is carried out, in the light of growth rate and neutral curves, in which stability and instability zones are identified. That is, numerical visualizations are carried out to graphically characterize the linear juncture of the interface progress. Depending on the selected physical parameters, it has been concluded that both the Hartmann number and the velocity relaxation time parameter have an effect depending on the order of the fluid layers. Some of the results of the investigation are the width of the channel plays an important and significant role in stabilizing the movement of flow, while it was found that the density ratio of the upper film to the lower layer helps stabilize the system unlike the effect of thermal conductivity ratio between top and bottom layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mitra P, Bhattacharyya P (1981) Unsteady hydromagnetic laminar flow of a conducting dusty fluid between two parallel plates started impulsively from rest. Acta Mech 39:171–182

    Article  MATH  Google Scholar 

  2. Datta N, Dalal DC (1993) Unsteady heat transfer to pulsatile flow of a dusty viscous incompressible fluid in a channel. Int J Heat Mass Transf 36(7):1783–1788

    Article  MATH  Google Scholar 

  3. Dalal DC, Datta N, Mukherjea SK (1998) Unsteady natural convection of a dusty fluid in an infinite rectangular channel. Int J Heat Mass Transf 41(3):547–562

    Article  MATH  Google Scholar 

  4. Ghosh NC, Ghosh BC, Debnath L (2000) The hydromagnetic flow of a dusty visco-elastic fluid between two infinite parallel plates. Comput Math Appl 39:103–116

    Article  MathSciNet  MATH  Google Scholar 

  5. Sahu KC, Matar OK (2010) Stability of plane channel flow with viscous heating. ASME J Fluids Eng 132(1):011202

    Article  Google Scholar 

  6. Attia HA (2006) Unsteady MHD Couette flow and heat transfer of dusty fluid with variable physical properties. Appl Math Comput 177:308–318

    MathSciNet  MATH  Google Scholar 

  7. Kumar Reddy VTSR, Janardhanan VM, Sahu KC (2011) Effects of wall-heating on the linear instability characteristics of pressure-driven two-layer channel flow. Chem Eng Sci 66(33):6272–6279

    Article  Google Scholar 

  8. Eguía P, Zueco J, Granada E, Patiño D (2011) NSM solution for unsteady MHD Couette flow of a dusty conducting fluid with variable viscosity and electric conductivity. Appl Math Model 35:303–316

    Article  MATH  Google Scholar 

  9. Sahu KC, Govindarajan R (2011) Linear stability of double-diffusive two-fluid channel flow. J Fluid Mech 687:529–539

    Article  MathSciNet  MATH  Google Scholar 

  10. Govindarajan R, Sahu KC (2014) Instabilities in viscosity-stratified flow. Annu Rev Mech 46:331–353

    Article  MathSciNet  MATH  Google Scholar 

  11. Mosayebidorcheh S, Hatami M, Ganji DD, Mosayebidorcheh T, Mirmohammadsadeghi SM (2015) Investigation of transient MHD Couette flow and heat transfer of dusty fluid with temperature-dependent properties. J Appl Fluid Mech 8(4):921–929

    Article  Google Scholar 

  12. Kumar KG, Gireesha BJ, Gorla RSR (2018) Flow and heat transfer of dusty hyperbolic tangent fluid over a stretching sheet in the presence of thermal radiation and magnetic field. Int J Mech Mater Eng 13(2):1–11

    Google Scholar 

  13. Kiran GR, Murthy VR, Radhakrishnamacharya G (2019) Pulsatile flow of a dusty fluid thorough a constricted channel in the presence of magnetic field. Mater Today Proc 19:2645–2649

    Article  Google Scholar 

  14. Gireesha BJ, Umeshaiah M, Prasannakumara BC, Shashikumar NS, Archana M (2020) Impact of nonlinear thermal radiation on magnetohydrodynamic three dimensional boundary layer flow of Jeffrey nanofluid over a nonlinearly permeable stretching sheet. Physica A 549:124051

    Article  MathSciNet  Google Scholar 

  15. Mahanthesh B, Mackolil J, Radhika M, Al-Kouz W (2021) Siddabasappa, Significance of quadratic thermal radiation and quadratic convection on boundary layer two-phase flow of a dusty nanoliquid past a vertical plate. Int Commun Heat Mass Transf 120:105029

  16. Iervolino M, Pascal JP, Vacca A (2018) Instabilities of a power-law film over an inclined permeable plane: a two-sided model. J Non-Newton Fluid Mech 259:111–124

    Article  MathSciNet  Google Scholar 

  17. Pascal JP (1999) Linear stability of fluid flow down a porous inclined plane. J Phys D Appl Phys 32:417–422

    Article  Google Scholar 

  18. Liu R, Liu Q (2009) Instabilities of a liquid film flowing down an inclined porous plane. Phys Rev E 80(036316):1–16

    Google Scholar 

  19. Nield D (2003) The stability of flow in a channel or duct occupied by a porous medium. Int J Heat Mass Transf 46:4351–4354

    Article  MATH  Google Scholar 

  20. Smith MK (1990) The long-wave instability in heated or cooled inclined liquid layers. J Fluid Mech 219:337–360

    Article  MATH  Google Scholar 

  21. Alkharashi, S.A.: The effect of the porosity property on the dynamics of some fluids. Master thesis, Tanta University (2007)

  22. Zakaria K, Sirwah MA (2018) Shock-waves between two electrified thin films flowing down nearly horizontal channel. Int J Mech Sci 136:439–450

    Article  Google Scholar 

  23. Alkharashi, S.A.: Stability of viscous fluids in the presence of the porosity effect. PhD thesis, Tanta University (2012)

  24. Mikishev AB, Nepomnyashchy AA (2010) Long-wavelength Marangoni convection in a liquid layer with insoluble surfactant: linear theory. Microgravity Sci Technol 22:415–423

    Article  Google Scholar 

  25. Dávalos-Orozco LA (2020) Nonlinear sideband thermocapillary instability of a thin film coating the inside of a thick walled cylinder with finite thermal conductivity in the absence of gravity. Microgravity Sci Technol 32:105–117

    Article  Google Scholar 

  26. Liu Y, Dong M, Wu X (2021) Receptivity of inviscid modes in supersonic boundary layers to wall perturbations. J Eng Math 128:20

    Article  MathSciNet  Google Scholar 

  27. Alkharashi SA, Alrashidi A (2020) Dynamical behavior of a porous liquid layer of an Oldroyd-B model flowing over an oscillatory heated substrate. Sadhana 45(7):1–16

    MathSciNet  Google Scholar 

  28. Alkharashi SA (2019) A model of two viscoelastic liquid films traveling down in an inclined electrified channel. Appl Math Comput 355:553–575

    MathSciNet  MATH  Google Scholar 

  29. Baingne M, Sharma G (2019) Effect of wall deformability on the stability of surfactant-laden visco-elastic liquid film falling down an inclined plane. J Non-Newton Fluid Mech 269:1–16

    Article  MathSciNet  Google Scholar 

  30. Mogilevskiy E, Vakhitova R (2019) Falling film of power-law fluid on a high-frequency oscillating inclined plane. J Non-Newton Fluid Mech 269:28–36

    Article  MathSciNet  Google Scholar 

  31. Iervolino M, Pascal JP, Vacca A (2019) Thermocapillary instabilities of a shear-thinning fluid falling over a porous layer. J Non-Newton Fluid Mech 270:36–50

    Article  MathSciNet  Google Scholar 

  32. Cheng PJ, Liu KC (2009) Hydromagnetic instability of a power-law liquid film flowing down a vertical cylinder using numerical approximation approach techniques. Appl Math Model 33:1904–1914

    Article  MathSciNet  MATH  Google Scholar 

  33. Cheng PJ, Chu IP (2009) Nonlinear hydromagnetic stability analysis of a pseudoplastic film flow. Aerosp Sci Technol 13:247–255

    Article  Google Scholar 

  34. Aman F, Ishak A, Pop I (2013) Magnetohydrodynamic stagnation-point flow towards a stretching/shrinking sheet with slip effects. Int Commun Heat Mass Transf 47:68–72

    Article  Google Scholar 

  35. Saqib M, Khan I, Shafie S (2019) Generalized magnetic blood flow in a cylindrical tube with magnetite dusty particles. J Magn Magn Mater 484:490–496

    Article  Google Scholar 

  36. Kalpana G, Madhura KR, Iyengar SS, Uma MS (2019) Numerical investigation on convective flow of two-phase MHD dusty nanofluids over a wavy surface with Brownian motion and thermophoresis effects. Int J Appl Comput Math 5(62):1–22

    MathSciNet  MATH  Google Scholar 

  37. Kuma P, Mohan H, Singh GJ (2006) Stability of two superposed viscoelastic fluid–particle mixtures. Z Angew Math Mech 86(1):72–77

    Article  MathSciNet  MATH  Google Scholar 

  38. D’Alessio SJD, Seth CJMP, Pascal JP (2014) The effects of variable fluid properties on thin film stability. Phys Fluids 26(122105):1–15

    MATH  Google Scholar 

  39. Zakaria K, Sirwah M, Alkharashi S (2010) Stability behavior of three non-Newtonian magnetic fluids in porous media. Commun Math Sci 9(3):767–796

    MathSciNet  MATH  Google Scholar 

  40. Sirwah MA (2012) Linear instability of the electrified free interface between two cylindrical shells of viscoelastic fluids through porous media. Acta Mech Sin 28(6):1572–1589

    Article  MathSciNet  MATH  Google Scholar 

  41. Alkharashi S, Gamiel Yasser (2017) Stability characteristics of periodic streaming fluids in porous media. Theor Math Phys 191(1):580–601

    Article  MathSciNet  MATH  Google Scholar 

  42. Zakaria K, Alkharashi S (2017) Modeling and analysis of two electrified films flow traveling down between inclined permeable parallel substrates. Acta Mech 228:2555–2581

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang B, Liu Y, Li L (2020) Nanofluid double diffusive natural convection in a porous cavity under multiple force fields. Numer Heat Transf Part A Appl 77(4):343–360

    Article  Google Scholar 

  44. Sirwah MA (2014) Sloshing waves in a heated viscoelastic fluid layer in an excited rectangular tank. Phys Lett A 378:3289–3300

    Article  MathSciNet  MATH  Google Scholar 

  45. Sirwah MA, Alkharashi SA (2021) Dynamic modeling of heated oscillatory layer of non-Newtonian liquid. Fluid Dyn 56:291–307

    Article  Google Scholar 

  46. Azizul FM, Alsabery AI, Hashim I, Chamkha AJ (2021) Impact of heat source on combined convection flow inside wavy-walled cavity filled with nanofluids via heatline concept. Appl Math Comput 393:125754

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameh A. Alkharashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

I: The coefficients which appear in solution (28) are

$$\begin{aligned} a_1^{(1)}= & {} -{\mathbb {L}}^{(1)},\\ a_2^{(1)}= & {} \frac{1}{a_0}\Big \{ {\mathbb {L}}^{(1)} {\mathcal {H}}^{(1)} \sinh \big ( r{\mathcal {H}}^{(1)} \big ) \sinh \big ( (r-1){\mathcal {H}}^{(2)} \big )-\mu {\mathcal {H}}^{(2)} \cosh \big ( (r-1){\mathcal {H}}^{(2)} \big )\\&\times \big [ {\mathbb {L}}^{(1)} \big (\cosh ( r{\mathcal {H}}^{(1)})-1\big )+{\mathbb {L}}^{(2)}\big ] + \mu {\mathbb {L}}^{(2)} {\mathcal {H}}^{(2)} \Big \}, \\ {\mathbb {L}}^{(j)}= & {} \frac{\mu ^{1-j} \rho ^{j-1} Da^{(j)}}{1+Da^{(j)} {Ha^{(j)}}^2}, ~~~ {\mathcal {H}}^{(j)}=\sqrt{{Ha^{(j)}}^2 +\frac{1}{Da^{(j)}} },\\ a_0= & {} {\mathcal {H}}^{(1)} \cosh \big ( r{\mathcal {H}}^{(1)} \big ) \sinh \big ( (r-1){\mathcal {H}}^{(2)} \big )-\mu {\mathcal {H}}^{(2)}\cosh \big ( (r-1){\mathcal {H}}^{(2)} \big ) \sinh \big ( r{\mathcal {H}}^{(1)} \big ) ,\\ a_1^{(2)}= & {} \frac{1}{a_0}\Bigg \{ {\mathbb {L}}^{(2)}\Big [ {\mathcal {H}}^{(1)} \cosh (r {\mathcal {H}}^{(1)})(\sinh ( {\mathcal {H}}^{(2)})-\sinh (r {\mathcal {H}}^{(2)}))+\mu {\mathcal {H}}^{(2)}\cosh (r {\mathcal {H}}^{(2)})\sinh (r {\mathcal {H}}^{(1)}) \Big ] ,\\&-2{\mathbb {L}}^{(1)}{\mathcal {H}}^{(1)}\sinh ({\mathcal {H}}^{(2)}) \sinh ^2 \Bigg (\frac{r {\mathcal {H}}^{(1)}}{2}\Bigg )\Bigg \} ,\\ a_2^{(2)}= & {} \frac{1}{a_0}\Bigg \{ {\mathbb {L}}^{(2)}\Big [ {\mathcal {H}}^{(1)} \cosh (r {\mathcal {H}}^{(1)})\Big (\cosh (r {\mathcal {H}}^{(2)})-\cosh ( {\mathcal {H}}^{(2)})\Big )-\mu {\mathcal {H}}^{(2)}\sinh (r {\mathcal {H}}^{(1)})\sinh (r {\mathcal {H}}^{(2)}) \Big ] ,\\&+{\mathbb {L}}^{(1)}{\mathcal {H}}^{(1)}\cosh ({\mathcal {H}}^{(2)}) (\cosh (r{\mathcal {H}}^{(2)})-1)\Bigg \} . \end{aligned}$$

II: The parameters given in Eq. (81) are

$$\begin{aligned} {\mathbb {B}}_{10[0]}^{(j)}= & {} \frac{\text {i}}{8Da^{(j)}{{\mathcal {H}}^{(j)}}^3\ell _{m}^{(j)} }\Big \{10 {\mathcal {H}}^{(j)}\Big [ a_1^{(j)} Da^{(j)} {\mathbb {A}}_{1[0]}^{(j)}\big (\text {Re}^{(j)}\ell _{m}^{(j)}-{\mathfrak {N}}^{(j)} \big )+ {\mathbb {A}}_{3[0]}^{(j)}\big [ \ell _{m}^{(j)}Da^{(j)}\big (\text {Re}^{(j)}(c_{[0]}\\&-{\mathbb {L}}^{(j)} )+c_{[0]}De^{(j)} {Ha^{(j)}}^2 \big ) +(c_{[0]}-{\mathbb {L}}^{(j)} )\big (3+Da^{(j)}(3{Ha^{(j)}}^2+{\mathfrak {N}}^{(j)}-3{{\mathcal {H}}^{(j)}}^2)\big ) \big ] \Big ] \\&- a_2^{(j)}Da^{(j)}{\mathbb {A}}_{2[0]}^{(j)}\big (3 {\mathfrak {N}}^{(j)}+17\text {Re}^{(j)} \ell _{m}^{(j)} \big )\Big \},\\ {\mathbb {B}}_{11[0]}^{(j)}= & {} \frac{\text {i}}{4Da^{(j)}{{\mathcal {H}}^{(j)}}^2\ell _{m}^{(j)} }\Big \{2 {\mathcal {H}}^{(j)}\Big [ a_2^{(j)} Da^{(j)} {\mathbb {A}}_{1[0]}^{(j)}\big (\text {Re}^{(j)}\ell _{m}^{(j)}-{\mathfrak {N}}^{(j)} \big )+ {\mathbb {A}}_{4[0]}^{(j)}\big [ \ell _{m}^{(j)}Da^{(j)}\big (\text {Re}^{(j)}({\mathbb {L}}^{(j)}\\&- c_{[0]})+c_{[0]}De^{(j)} {Ha^{(j)}}^2 \big ) +(c_{[0]}-{\mathbb {L}}^{(j)} )\big (3+Da^{(j)}(3{Ha^{(j)}}^2+{\mathfrak {N}}^{(j)}-3{{\mathcal {H}}^{(j)}}^2)\big ) \big ] \Big ] \\&- a_1^{(j)}Da^{(j)}{\mathbb {A}}_{2[0]}^{(j)}\big ({\mathfrak {N}}^{(j)}-5\text {Re}^{(j)} \ell _{m}^{(j)} \big )\Big \},\\ {\mathbb {B}}_{12[0]}^{(j)}= & {} \frac{\text {i}a_2^{(j)}{\mathbb {A}}_{2[0]}^{(j)} \big ( {\mathfrak {N}}^{(j)}-\ell _{m}^{(j)} \text {Re}^{(j)} \big )}{4\ell _{m}^{(j)} {{\mathcal {H}}^{(j)}} },\\ {\mathbb {B}}_{20[0]}^{(j)}= & {} {\mathbb {B}}_{10[0]}^{(j)} ~ \text {at } ~ \{a_1^{(j)}\rightarrow a_2^{(j)}, {\mathbb {A}}_{3[0]}^{(j)}\rightarrow {\mathbb {A}}_{4[0]}^{(j)}, a_2^{(j)}\rightarrow a_1^{(j)} \},\\ {\mathbb {B}}_{21[0]}^{(j)}= & {} {\mathbb {B}}_{11[0]}^{(j)} ~ \text {at } ~ \{a_2^{(j)}\rightarrow a_1^{(j)}, {\mathbb {A}}_{4[0]}^{(j)}\rightarrow {\mathbb {A}}_{3[0]}^{(j)}, a_1^{(j)}\rightarrow a_2^{(j)}\},\\ {\mathbb {B}}_{22[0]}^{(j)}= & {} \frac{a_1^{(j)}}{a_2^{(j)} }{\mathbb {B}}_{12[0]}^{(j)},\\ {\mathbb {C}}_{1[0]}^{(j)}= & {} \frac{\text {i}\big (a_1^{(j)} {\mathbb {A}}_{3[0]}^{(j)}+a_2^{(j)} {\mathbb {A}}_{4[0]}^{(j)} \big )\big [ 3+Da^{(j)}\big ( 3{Ha^{(j)}}^2+4{\mathfrak {N}}^{(j)}-3 {{\mathcal {H}}^{(j)}}^2 \big ) \big ]}{24Da^{(j)}{{\mathcal {H}}^{(j)}}^2 \ell _{m}^{(j)} },\\ {\mathbb {C}}_{2[0]}^{(j)}= & {} \frac{\big (a_2^{(j)} {\mathbb {A}}_{3[0]}^{(j)}+a_1^{(j)} {\mathbb {A}}_{4[0]}^{(j)} \big )}{\big (a_1^{(j)} {\mathbb {A}}_{3[0]}^{(j)}+a_2^{(j)} {\mathbb {A}}_{4[0]}^{(j)} \big )}{\mathbb {C}}_{1[0]}^{(j)},\\ {\mathbb {C}}_{3[0]}^{(j)}= & {} \frac{3\text {i}\big (a_2^{(j)} {\mathbb {A}}_{4[0]}^{(j)}-a_1^{(j)} {\mathbb {A}}_{3[0]}^{(j)} \big )\big [ 1+Da^{(j)}\big ( {Ha^{(j)}}^2- {{\mathcal {H}}^{(j)}}^2 \big ) \big ]}{4Da^{(j)} \ell _{m}^{(j)} }. \end{aligned}$$

III: The calculations of the coefficients of Eq. (82) are

$$\begin{aligned} {\mathcal {B}}_{10[0]}^{(j)}= & {} \text {i}Pe^{(j)}{{\mathcal {H}}^{(j)}}^{-3}(1+D_c^{(j)} D_\rho ^{(j)})\Bigg [ {\mathcal {H}}^{(j)}\big ( a_1^{(1)}{\mathcal {B}}_2^{(j)}- b _1^{(j)}{\mathbb {A}}_{3[0]}^{(j)} \big )-2 a_2^{(1)} {\mathcal {B}}_1^{(j)}\Bigg ],\\ {\mathcal {B}}_{11[0]}^{(j)}= & {} \text {i}Pe^{(j)}{{\mathcal {H}}^{(j)}}^{-2}a_1^{(j)}{\mathcal {B}}_1^{(j)}\big (1+D_c^{(j)} D_\rho ^{(j)}\big ),\\ {\mathcal {B}}_{20[0]}^{(j)}= & {} {\mathcal {B}}_{10[0]}^{(j)}~\text {at}~\{a_1^{(j)}\rightarrow a_2^{(j)}, {\mathbb {A}}_{3[0]}^{(j)}\rightarrow {\mathbb {A}}_{4[0]}^{(j)}, a_2^{(j)}\rightarrow a_1^{(j)} \},\\ {\mathcal {B}}_{21[0]}^{(j)}= & {} \text {i}Pe^{(j)}{{\mathcal {H}}^{(j)}}^{-2}a_2^{(j)}{\mathcal {B}}_1^{(j)}\big (1+D_c^{(j)} D_\rho ^{(j)}\big ),\\ {\mathcal {C}}_{1[0]}^{(j)}= & {} \frac{\text {i}}{2}Pe^{(j)}\big (1+D_c^{(j)} D_\rho ^{(j)}\big ) \Bigg [{\mathcal {B}}_2^{(j)}({\mathbb {L}}^{(j)}-c_{[0]})- b _1^{(j)} {\mathbb {A}}_{1[0]}^{(j)}\Bigg ] ,\\ {\mathcal {C}}_{2[0]}^{(j)}= & {} \frac{\text {i}}{6}Pe^{(j)}\big (1+D_c^{(j)} D_\rho ^{(j)}\big ) \Bigg [{\mathcal {B}}_1^{(j)}({\mathbb {L}}^{(j)}-c_{[0]})- b _1^{(j)} {\mathbb {A}}_{2[0]}^{(j)}\Bigg ], \end{aligned}$$

where

$$\begin{aligned} b_1^{(1)}= & {} \frac{\kappa }{r (1-\kappa )-1}, \qquad b_1^{(2)} =b_1^{(1)}/\kappa , \qquad b_2^{(1)} =1, b_2^{(2)} =-b_1^{(2)}, \\ {\mathcal {B}}_1^{(1)}= & {} \frac{\kappa {\hat{h}}_{[0]} }{1+r (\kappa -1)}\left( \frac{\text {d}T_{0f}^{(2)}}{\text {d}y}-\frac{\text {d}T_{0f}^{(1)}}{\text {d}y}\right) \Big |_{y=r},\qquad {\mathcal {B}}_1^{(2)}={\mathcal {B}}_1^{(1)}/\kappa ,\qquad {\mathcal {B}}_2^{(1)}=0, \qquad {\mathcal {B}}_2^{(2)}=-{\mathcal {B}}_1^{(2)}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkharashi, S.A., Sirwah, M.A. Dynamical responses of inclined heated channel of MHD dusty fluids through porous media. J Eng Math 130, 5 (2021). https://doi.org/10.1007/s10665-021-10160-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-021-10160-0

Keywords

Navigation