Skip to main content
Log in

Generalized analytical solution to wave interaction with submerged multi-layer horizontal porous plate breakwaters

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A generalized analytical solution to wave interaction with multi-layer submerged horizontal porous plate breakwaters has been derived in the context of linear potential theory. A two-dimensional problem with N horizontal porous plate layers in a finite water depth has been formulated, and the viscous effects of the porous plates are considered using Darcy’s law. In solving the spatial velocity potentials using the matched eigenfunction expansion method, techniques based on artificial potential splitting are employed to avoid complex dispersion relations. The developed analytical solution is verified by comparison with results of previous research on single- and double-layer cases and validated with the results of physical model tests. The analytical solution gives scientific insights into wave interaction with the breakwater and provides an effective and practical tool for designing its parameters. The velocity fields are computed and the way the horizontal porous plates play their role in attenuating fluid motion is illustrated. The effects of various parameters (i.e., plate submergence, width, porosity, layer number, and wave parameter) on the overall hydrodynamic and wave dissipation performance are discussed. The results indicate that a breakwater with multi-layer horizontal porous plates exhibits improved performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yu X (2002) Functional performance of a submerged and essentially horizontal plate for offshore wave control: a review. Coast Eng J 44(02):127–147

    Article  Google Scholar 

  2. Yu X, Chwang AT (1994) Water waves above submerged porous plate. J Eng Mech 120(6):1270–1282

    Article  Google Scholar 

  3. Taylor G (1956) Fluid flow in regions bounded by porous surfaces. Proc R Soc Lond Ser A 234(1199):456–475

    Article  ADS  MATH  Google Scholar 

  4. Chwang AT (1983) A porous-wavemaker theory. J Fluid Mech 132:395–406

    Article  ADS  MATH  Google Scholar 

  5. Chwang AT, Wu J (1994) Wave scattering by submerged porous disk. J Eng Mech 120(12):2575–2587

    Article  Google Scholar 

  6. Yu X (1995) Diffraction of water waves by porous breakwaters. J Waterw Port Coast Ocean Eng 121(6):275–282

    Article  Google Scholar 

  7. Chwang AT, Chan AT (1998) Interaction between porous media and wave motion. Annu Rev Fluid Mech 30(1):53–84

    Article  ADS  MathSciNet  Google Scholar 

  8. Hsu HH, Wu YC (1998) Scattering of water wave by a submerged horizontal plate and a submerged permeable breakwater. Ocean Eng 26(4):325–341

    Article  Google Scholar 

  9. Cho I, Kim M (2000) Interactions of horizontal porous flexible membrane with waves. J Waterw Port Coast Ocean Eng 126(5):245–253

    Article  Google Scholar 

  10. Cho IH, Kim MH (2008) Wave absorbing system using inclined perforated plates. J Fluid Mech 608:1–20

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Wu J, Wan Z, Fang Y (1998) Wave reflection by a vertical wall with a horizontal submerged porous plate. Ocean Eng 25(9):767–779

    Article  Google Scholar 

  12. Yip T, Chwang AT (1998) Water wave control by submerged pitching porous plate. J Eng Mech 124(4):428–434

    Article  Google Scholar 

  13. Yip T, Chwang AT (2000) Perforated wall breakwater with internal horizontal plate. J Eng Mech 126(5):533–538

    Article  Google Scholar 

  14. Yip T, Sahoo T, Chwang AT (2002) Trapping of surface waves by porous and flexible structures. Wave Motion 35(1):41–54

    Article  MATH  Google Scholar 

  15. Liu Y, Li YC, Teng B (2007) Wave interaction with a perforated wall breakwater with a submerged horizontal porous plate. Ocean Eng 34(17):2364–2373

    Article  Google Scholar 

  16. Liu Y, Li YC, Teng B, Dong S (2008) Wave motion over a submerged breakwater with an upper horizontal porous plate and a lower horizontal solid plate. Ocean Eng 35(16):1588–1596

    Article  Google Scholar 

  17. Zhao F, Bao W, Kinoshita T, Itakura H (2010) Interaction of waves and a porous cylinder with an inner horizontal porous plate. Appl Ocean Res 32(2):252–259

    Article  Google Scholar 

  18. Behera H, Sahoo T (2015) Hydroelastic analysis of gravity wave interaction with submerged horizontal flexible porous plate. J Fluids Struct 54:643–660

    Article  Google Scholar 

  19. Molin B (2011) Hydrodynamic modeling of perforated structures. Appl Ocean Res 33(1):1–11

    Article  ADS  Google Scholar 

  20. An S, Faltinsen OM (2012) Linear free-surface effects on a horizontally submerged and perforated 2D thin plate in finite and infinite water depths. Appl Ocean Res 37:220–234

    Article  Google Scholar 

  21. Neves MdG, Losada IJ, Losada MA (2000) Short-wave and wave group scattering by submerged porous plate. J Eng Mech 126(10):1048–1056

    Article  Google Scholar 

  22. Liu Y, Li HJ, Li YC (2012) A new analytical solution for wave scattering by a submerged horizontal porous plate with finite thickness. Ocean Eng 42:83–92

    Article  Google Scholar 

  23. Liu Y, Li YC (2011) An alternative analytical solution for water-wave motion over a submerged horizontal porous plate. J Eng Math 69(4):385–400

    Article  MathSciNet  MATH  Google Scholar 

  24. Cho I, Koh H, Kim J, Kim M (2013) Wave scattering by dual submerged horizontal porous plates. Ocean Eng 73:149–158

    Article  Google Scholar 

  25. Liu Y, Li HJ (2014) Wave scattering by dual submerged horizontal porous plates: further results. Ocean Eng 81:158–163

    Article  Google Scholar 

  26. Wang KH, Shen Q (1999) Wave motion over a group of submerged horizontal plates. Int J Eng Sci 37(6):703–715

    Article  Google Scholar 

  27. Liu Y, Li YC, Teng B (2012) Interaction between obliquely incident waves and an infinite array of multi-chamber perforated caissons. J Eng Math 74(1):1–18

    Article  MathSciNet  MATH  Google Scholar 

  28. Linton CM, McIver P (2001) Handbook of mathematical techniques for wave/structure interactions. The Wiener-Hopf and related techniques, Chap 5. Chapman and Hall/CRC, Boca Raton

  29. Yu X, Chwang AT (1994) Wave-induced oscillation in harbor with porous breakwaters. J Waterw Port Coast Ocean Eng 120(2):125–144

    Article  Google Scholar 

  30. Isaacson M, Premasiri S, Yang G (1998) Wave interactions with vertical slotted barrier. J Waterw Port Coast Ocean Eng 124(3):118–126

    Article  Google Scholar 

  31. Isaacson M, Baldwin J, Premasiri S, Yang G (1999) Wave interactions with double slotted barriers. Appl Ocean Res 21(2):81–91

    Article  Google Scholar 

  32. Kellogg OD (1967) Foundations of potential theory. Sequences of harmonic functions. Springer, Berlin, pp 248–277

    Book  Google Scholar 

  33. Lee JF (1995) On the heave radiation of a rectangular structure. Ocean Eng 22(1):19–34

    Article  Google Scholar 

  34. Lan Y, Hsu T, Lai J, Chang C, Ting C (2011) Bragg scattering of waves propagating over a series of poro-elastic submerged breakwaters. Wave Motion 48(1):1–12

    Article  MathSciNet  MATH  Google Scholar 

  35. Evans DV, Peter MA (2009) Asymptotic reflection of linear water waves by submerged horizontal porous plates. J Eng Math 69(2):135–154

    MathSciNet  MATH  Google Scholar 

  36. Mansard EP, Funke E (1980) The measurement of incident and reflected spectra using a least squares method. Coast Eng Proc 1(17)

  37. Andria G, Savino M, Trotta A (1989) Windows and interpolation algorithms to improve electrical measurement accuracy. IEEE Trans Instrum Meas 38(4):856–863

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the National Natural Science Foundation of China (Grant No. 51239007). The authors are also grateful to the anonymous reviewers whose valuable comments and suggestions have contributed to improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longfei Xiao.

Appendices

Appendix 1: Elements in coefficient matrices for symmetrical potentials

The algebraic equation set for the symmetrical potentials is given by:

$$\begin{aligned}&\left[ A^j_{nm}\right] \left\{ a_m\right\} + \left\{ b^j_n\right\} = \left\{ R^j_n\right\} ,\quad j = 1,2,\ldots ,N\!+\!1, \end{aligned}$$
(57)
$$\begin{aligned}&\left\{ a_n\right\} + \sum _{j=1}^{N+1} \left[ B^j_{nm}\right] \left\{ b^j_m\right\} + \sum _{j=1}^N \left[ C^j_{nm'}\right] \left\{ c^j_{m'}\right\} = \left\{ R^{N+2}_n\right\} . \end{aligned}$$
(58)
$$\begin{aligned}&\left[ D^{1,1}_{n'm}\right] \left\{ b^1_m\right\} + \left[ D^{1,2}_{n'm}\right] \left\{ b^2_m\right\} + \left[ E^{1,1}_{n'm'}\right] \left\{ c^1_{m'}\right\} + \left[ E^{1,2}_{n'm'}\right] \left\{ c^2_{m'}\right\} = 0, \end{aligned}$$
(59)
$$\begin{aligned}&\left[ D^{j,j}_{n'm}\right] \left\{ b^j_m\right\} + \left[ D^{j,j+1}_{n'm}\right] \left\{ b^{j+1}_m\right\} + \left[ E^{j,j-1}_{n'm'}\right] \left\{ c^{j-1}_{m'}\right\} + \left[ E^{j,j}_{n'm'}\right] \left\{ c^j_{m'}\right\} + \left[ E^{j,j+1}_{n'm'}\right] \left\{ c^{j+1}_{m'}\right\} = 0,\nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad {j = 2,3,\ldots ,N\!-\!1}, \end{aligned}$$
(60)
$$\begin{aligned}&\left[ D^{N,N}_{n'm}\right] \left\{ b^N_m\right\} + \left[ D^{N,N\!+\!1}_{n'm}\right] \left\{ b^{N\!+\!1}_m\right\} + \left[ E^{N,N-1}_{n'm'}\right] \left\{ c^{N-1}_{m'}\right\} + \left[ E^{N,N}_{n'm'}\right] \left\{ c^N_{m'}\right\} = 0, \end{aligned}$$
(61)

where \([\cdot ]\) denotes a matrix and \(\{\cdot \}\) denotes a column vector. The matrix elements are given by

$$\begin{aligned}&A^j_{nm} = \frac{\int _{-d_j}^{-d_{j-1}} Z_m(z) f_{j,n}(z) \,\mathrm {d}z}{-\int _{-d_j}^{-d_{j-1}} \left( f_{j,n}(z) \right) ^2 \,\mathrm {d}z},\quad j = 1,2,\ldots ,N\!+\!1, \end{aligned}$$
(62)
$$\begin{aligned}&B^j_{nm} = \left\{ \begin{array}{ll} \lambda _m \tanh {\lambda _m L} \frac{\int _{-d_1}^0 Z_n(z) f_{1,m}(z) \,\mathrm {d}z}{\tilde{k}_n \int _{-H}^0 \left( Z_n(z) \right) ^2 \,\mathrm {d}z},\quad j = 1,\\ \kappa ^j_m \tanh {\kappa ^j_m L} \frac{\int _{-d_j}^{-d_{j-1}} Z_n(z) f_{j,m}(z) \,\mathrm {d}z}{\tilde{k}_n \int _{-H}^0 \left( Z_n(z) \right) ^2 \,\mathrm {d}z}, \quad j = 2,3,\ldots ,N\!+\!1, \end{array} \right. \end{aligned}$$
(63)
$$\begin{aligned}&C^j_{nm} = \left\{ \begin{array}{ll} -\frac{\sin {\mu _{m'} L} \left\{ \begin{array}{l} \int _{-d_1}^0 Z_n(z) \left( \eta _{m'} \cosh \mu _{m'}(z+d_1) + \sinh \mu _{m'}(z+d_1) \right) \,\mathrm {d}z \\ \quad + \int _{-d_2}^{-d_1} Z_n(z) \frac{\cosh \mu _{m'}(z+d_2)}{\sinh (\mu _{m'}h_2)} \,\mathrm {d}z \end{array} \right\} }{\tilde{k}_n \int _{-H}^0 \left( Z_n(z) \right) ^2 \,\mathrm {d}z},\quad j = 1,\\ \frac{\sin {\mu _{m'} L} \left[ \int _{-d_j}^{-d_{j-1}} Z_n(z) \frac{\cosh \mu _{m'}(z+d_{j-1})}{\sinh (\mu _{m'}h_j)} \,\mathrm {d}z - \int _{-d_{j+1}}^{-d_j} Z_n(z) \frac{\cosh \mu _{m'}(z+d_{j+1})}{\sinh (\mu _{m'}h_{j+1})} \,\mathrm {d}z \right] }{\tilde{k}_n \int _{-H}^0 \left( Z_n(z) \right) ^2 \,\mathrm {d}z},\quad j = 2,3,\ldots ,N, \end{array}\right. \end{aligned}$$
(64)
$$\begin{aligned}&D^{j,j}_{n'm} = \left\{ \begin{aligned}&\frac{k_0 G_1}{\cos \left( \lambda _m d_1\right) } \int _{-L}^0 \frac{\cosh (\lambda _m x)}{\cosh (\lambda _m L)} \cos (\mu _{n'} x) \,\mathrm {d}x,\quad j=1,\\&k_0 G_j \int _{-L}^0 \frac{\cosh (\kappa ^j_m x)}{\cosh (\kappa ^j_m L)} \cos (\mu _{n'} x) \,\mathrm {d}x,\quad j = 2,3,\ldots ,N, \end{aligned}\right. \end{aligned}$$
(65)
$$\begin{aligned}&D^{j,j+1}_{n'm} = -k_0 G_j \cos \left( \kappa ^{j+1}_m h_{j+1} \right) \int _{-L}^0 \frac{\cosh (\kappa ^{j+1}_m x)}{\cosh (\kappa ^{j+1}_m L)} \cos (\mu _{n'} x) \,\mathrm {d}x,\quad j = 1,2,\ldots ,N, \end{aligned}$$
(66)
$$\begin{aligned}&E^{j,j-1}_{n'm'} = \frac{L}{2} G_j \beta ^j_{n'} \delta _{n'm'},\quad j = 2,3,\ldots ,N, \end{aligned}$$
(67)
$$\begin{aligned}&E^{j,j}_{n'm'} = \left\{ \begin{aligned}&\frac{L}{2} \alpha _{n'} \delta _{n'm'}, \quad j = 1,\\&\frac{L}{2} \gamma ^j_{n'} \delta _{n'm'},\quad j = 2,3,\ldots ,N, \end{aligned} \right. \end{aligned}$$
(68)
$$\begin{aligned}&E^{j,j+1}_{n'm'} = \frac{L}{2} G_j \beta ^{j+1}_{n'} \delta _{n'm'},\quad j = 1,2,\ldots ,N-1, \end{aligned}$$
(69)
$$\begin{aligned}&R^j_n = \frac{\int _{-d_j}^{-d_{j-1}} Z_0(z) f_{j,n}(z) \,\mathrm {d}z}{\int _{-d_j}^{-d_{j-1}} \left( f_{j,n}(z) \right) ^2 \,\mathrm {d}z},\quad j = 2,3,\ldots ,N\!+\!1, \end{aligned}$$
(70)
$$\begin{aligned}&R^{N+2}_n = \delta _{n0}. \end{aligned}$$
(71)

Here, \(\alpha _{m'}\), \(\beta ^j_{m'}\) and \(\gamma ^j_{m'}\) are given by:

$$\begin{aligned}&\alpha _{m'} = 1 + \mathrm {i}k G_1 \left( \frac{\eta _{m'}}{\mu _{m'}} - \frac{\coth \left( \mu _{m'} h_2\right) }{\mu _{m'}} \right) ,\end{aligned}$$
(72)
$$\begin{aligned}&\beta ^j_{m'} = \frac{\mathrm {i}k}{\mu _{m'}\sinh \left( \mu _{m'} h_j\right) }, \end{aligned}$$
(73)
$$\begin{aligned}&\gamma ^j_{m'} = 1 - \mathrm {i}k G_j \left( \frac{\coth \left( \mu _{m'} h_j\right) }{\mu _{m'}}+\frac{\coth \left( \mu _{m'} h_{j+1}\right) }{\mu _{m'}}\right) , \end{aligned}$$
(74)

and \(\tilde{k}_n\) is defined by \(\tilde{k}_n = \left\{ \begin{aligned} -k_0,&\quad n = 0,\\ k_n,&\quad n = 1,2,\ldots \end{aligned} \right. \)

Appendix 2: Elements in coefficient matrices for anti-symmetrical potentials

The algebraic equation set for the anti-symmetrical potentials is given by

$$\begin{aligned}&\left\{ \bar{a}_n\right\} + \sum _{j=1}^{N\!+\!1} \left[ \overline{B}^j_{nm}\right] \left\{ \bar{b}^j_n\right\} + \sum _{j=1}^{N} \left[ \overline{C}^j_{nm'}\right] \left\{ \bar{c}^{\,j}_{m'}\right\} = \left\{ \overline{R}^1_n\right\} ,\end{aligned}$$
(75)
$$\begin{aligned}&\left[ \overline{A}^j_{nm}\right] \left\{ \bar{a}_m\right\} + \left\{ \bar{b}^j_n\right\} = \left\{ \overline{R}^{1+j}_n\right\} , \quad j = 1,2,\ldots ,N\!+\!1, \end{aligned}$$
(76)
$$\begin{aligned}&\left[ \overline{D}^{1,1}_{n'm}\right] \left\{ \bar{b}^1_m\right\} + \left[ \overline{D}^{1,2}_{n'm}\right] \left\{ \bar{b}^2_m\right\} + \left[ \overline{E}^{1,1}_{n'm'}\right] \left\{ \bar{c}^{\,1}_{m'}\right\} + \left[ \overline{E}^{1,2}_{n'm'}\right] \left\{ \bar{c}^{\,2}_{m'}\right\} = 0, \end{aligned}$$
(77)
$$\begin{aligned}&\left[ \overline{D}^{j,j}_{n'm}\right] \left\{ \bar{b}^j_m\right\} + \left[ \overline{D}^{j,j+1}_{n'm}\right] \left\{ \bar{b}^{j+1}_m\right\} + \left[ \overline{E}^{j,j-1}_{n'm'}\right] \left\{ \bar{c}^{\,j-1}_{m'}\right\} + \left[ \overline{E}^{j,j}_{n'm'}\right] \left\{ \bar{c}^{\,j}_{m'}\right\} + \left[ \overline{E}^{j,j+1}_{n'm'}\right] \left\{ \bar{c}^{\,j+1}_{m'}\right\} = 0 \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad {j = 2,3,\ldots ,N\!-\!1}, \end{aligned}$$
(78)
$$\begin{aligned}&\left[ \overline{D}^{N,N}_{n'm}\right] \left\{ \bar{b}^N_m\right\} + \left[ \overline{D}^{N,N\!+\!1}_{n'm}\right] \left\{ \bar{b}^{N\!+\!1}_m\right\} + \left[ \overline{E}^{N,N-1}_{n'm'}\right] \left\{ \bar{c}^{N-1}_{m'}\right\} + \left[ \overline{E}^{N,N}_{n'm'}\right] \left\{ \bar{c}^N_{m'}\right\} = 0. \end{aligned}$$
(79)

The matrix elements in Eqs. (75)–(79) are given by

$$\begin{aligned}&\overline{A}^1_{nm} = \frac{\tilde{k}_m \int _{-d_1}^0 Z_m(z) f_{1,n}(z) \,\mathrm {d}z}{\lambda _n \coth (\lambda _n L) \int _{-d_1}^0 \left( f_{1,n}(z) \right) ^2 \,\mathrm {d}z}, \end{aligned}$$
(80)
$$\begin{aligned}&\overline{A}^j_{nm} = \left\{ \begin{array}{ll} \frac{\tilde{k}_m L \int _{-d_j}^{-d_{j-1}} Z_m(z) \,\mathrm {d}z}{h_j}, \quad n = 0,\\ \frac{2 \tilde{k}_m \int _{-d_j}^{-d_{j-1}} Z_m(z) f_{j,n}(z) \,\mathrm {d}z}{h_j \kappa ^j_n \coth (\kappa ^j_n L)}, \quad n = 1,2,\ldots ,M, \end{array} \right. \quad j = 2,3,\ldots ,N\!+\!1, \end{aligned}$$
(81)
$$\begin{aligned}&\overline{B}^j_{nm} = -\frac{\int _{-d_j}^{-d_{j-1}} Z_n(z) f_{j,m}(z) \,\mathrm {d}z}{\int _{-H}^0 \left( Z_n(z) \right) ^2 \,\mathrm {d}z}, \quad j = 1,2,\ldots ,N\!+\!1, \end{aligned}$$
(82)
$$\begin{aligned}&\overline{C}^j_{nm'} = \left\{ \begin{array}{ll} \frac{\sin {\mu _{m'} L} \left\{ \begin{array}{l} \int _{-d_1}^0 Z_n(z) \left( \eta _{m'} \cosh \mu _{m'}(z+d_1) + \sinh \mu _{m'}(z+d_1) \right) \,\mathrm {d}z \\ \quad + \int _{-d_2}^{-d_1} Z_n(z) \frac{\cosh \mu _{m'}(z+d_2)}{\sinh (\mu _{m'}h_2)} \,\mathrm {d}z \end{array} \right\} }{\mu _{m'} \int _{-H}^0 \left( Z_n(z) \right) ^2 \,\mathrm {d}z},\quad j = 1,\\ \frac{\sin {\mu _{m'} L} \left[ \int _{-d_{j+1}}^{-d_j} Z_n(z) \frac{\cosh \mu _{m'}(z+d_{j+1})}{\sinh (\mu _{m'}h_{j+1})} \,\mathrm {d}z - \int _{-d_j}^{-d_{j-1}} Z_n(z) \frac{\cosh \mu _{m'}(z+d_{j-1})}{\sinh (\mu _{m'}h_j)} \,\mathrm {d}z \right] }{\mu _{m'} \int _{-H}^0 \left( Z_n(z) \right) ^2 \,\mathrm {d}z}, \quad {j = 2,3,\ldots ,N},\\ \end{array} \right. \end{aligned}$$
(83)
$$\begin{aligned}&\overline{D}^{1,1}_{n'm} = \frac{-k_0 G_1}{\cos (\lambda _m d_1)} \int _{-L}^0 \frac{\sinh (\lambda _m x)}{\sinh (\lambda _m L)} \sin (\mu _{n'} x) \,\mathrm {d}x, \end{aligned}$$
(84)
$$\begin{aligned}&\overline{D}^{j,j}_{n'm} = \left\{ \begin{aligned}&-k_0 G_j \int _{-L}^0 \frac{x}{L} \sin (\mu _{n'} x) \,\mathrm {d}x, \quad m = 0,\\&-k_0 G_j \int _{-L}^0 \frac{\sinh (\kappa ^j_m x)}{\sinh (\kappa ^j_m L)} \sin (\mu _{n'} x) \,\mathrm {d}x,\quad m = 1,2,\ldots , \end{aligned} \right. \quad j = 2,3,\ldots ,N, \end{aligned}$$
(85)
$$\begin{aligned}&\overline{D}^{j,j+1}_{n'm} = \left\{ \begin{aligned}&k_0 G_j \int _{-L}^0 \frac{x}{L} \sin (\mu _{n'} x) \,\mathrm {d}x, \quad m = 0,\\&k_0 G_j \cos (\kappa ^{j+1}_m h_{j+1}) \int _{-L}^0 \frac{\sinh (\kappa ^{j+1}_m x)}{\sinh (\kappa ^{j+1}_m L)} \sin (\mu _{n'} x) \,\mathrm {d}x, \quad m = 1,2,\ldots , \end{aligned} \right. \quad j = 1,2,\ldots ,N, \end{aligned}$$
(86)
$$\begin{aligned}&\overline{E}^{j,j-1}_{n'm'} = \frac{L}{2} G_j \beta ^j_{n'} \delta _{n'm'},\quad j = 2,3,\ldots ,N, \end{aligned}$$
(87)
$$\begin{aligned}&\overline{E}^{j,j}_{n'm'} = \left\{ \begin{aligned}&\frac{L}{2} \alpha _{n'} \delta _{n'm'}, \quad j = 1,\\&\frac{L}{2} \gamma ^j_{n'} \delta _{n'm'},\quad j = 2,3,\ldots ,N, \end{aligned} \right. \end{aligned}$$
(88)
$$\begin{aligned}&\overline{E}^{j,j+1}_{n'm'} = \frac{L}{2} G_j \beta ^{j+1}_{n'} \delta _{n'm'},\quad j = 1,2,\ldots ,N-1, \end{aligned}$$
(89)
$$\begin{aligned}&\overline{R}^1_n = -\delta _{n0}, \end{aligned}$$
(90)
$$\begin{aligned}&\overline{R}^2_n = \frac{-k_0 \int _{-d_1}^0 Z_0(z) f_{1,n}(z) \,\mathrm {d}z}{\lambda _n \coth (\lambda _n L) \int _{-d_1}^0 \left( f_{1,n}(z) \right) ^2 \,\mathrm {d}z}, \end{aligned}$$
(91)
$$\begin{aligned}&\overline{R}^{1+j}_n = \left\{ \begin{aligned}&\frac{-k_0 L \int _{-d_j}^{-d_{j-1}} Z_0(z) \,\mathrm {d}z}{h_j}, \quad n = 0,\\&\frac{-2 k_0 \int _{-d_j}^{-d_{j-1}} Z_0(z) f_{j,n}(z) \,\mathrm {d}z}{h_j \kappa ^j_n \coth (\kappa ^j_n L)}, \quad n = 1,2,\ldots ,M, \end{aligned} \right. \quad j = 2,3,\ldots ,N+1. \end{aligned}$$
(92)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Z., Xiao, L. & Peng, T. Generalized analytical solution to wave interaction with submerged multi-layer horizontal porous plate breakwaters. J Eng Math 105, 117–135 (2017). https://doi.org/10.1007/s10665-016-9886-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-016-9886-2

Keywords

Navigation