Skip to main content

Advertisement

Log in

Effect of balance weight on dynamic characteristics of a rotating wind turbine blade

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Iron pellets are often added in blades to maintain moment balance in the design process of a wind turbine. The balance weight will change the natural vibration characteristics of the wind turbine blade. Resonant frequencies may appear for this reason, so it is necessary to study the effects of balance weight on the dynamic characteristics of a blade. In this paper, the wind turbine blade, after the weight balance process, is modeled as an Euler–Bernoulli beam with lumped masses. A mathematical model for a rotating nonuniform blade with a lumped mass on an arbitrary section is established, while nonlinear partial differential equations governing the coupled extensional–bending–bending vibration are obtained by applying the Hamiltonian principle. The associated modal problem is obtained from the governing equations, and then the differential form of the modal problem is transformed to integral form based on Green’s functions (structural influence functions). A direct numerical approach is applied to calculate natural frequencies and vibrating modes. The effects of the mass and position of the balance weight and the rotating speed on the natural frequencies and mode shapes of the blade are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee HP (1993) Vibration on an inclined rotating cantilever beam with tip mass. J Vib Acoust 115(3):241–245

    Article  Google Scholar 

  2. Park JH, Kim JH (1999) Dynamic analysis of rotating curved beam with a tip mass. J Sound Vib 228(5):1017–1034

    Article  ADS  Google Scholar 

  3. Song O, Librescu L (1999) Modeling and dynamic behavior of rotating blades carrying a tip mass and incorporating adaptive capabilities. Acta Mech 134(3–4):169–197

    Article  MATH  Google Scholar 

  4. Yang H, Hong JZ, Yu ZY (2003) Dynamics modeling of a flexible hub-beam system with a tip mass. J Sound Vib 226(4):759–774

    Article  ADS  Google Scholar 

  5. Oguamanam DCD (2003) Free vibration of beams with finite mass rigid tip load and flexural–torsional coupling. Int J Mech Sci 45(6–7):963–979

    Article  MATH  Google Scholar 

  6. Furta SD (2003) Linear vibrations of a rotating elastic beam with an attached point mass. J Eng Math 46(2):165–188

    Article  MathSciNet  MATH  Google Scholar 

  7. Yaman M (2006) Finite element vibration analysis of a partially covered cantilever beam with concentrated tip mass. Mater Des 27(3):243–250

    Article  MathSciNet  Google Scholar 

  8. Sinha A, Bose S, Nandi A, Neogy S (2013) A precessing and nutating beam with a tip mass. Mech Res Commun 53:75–84

    Article  Google Scholar 

  9. Kar RC, Neogy S (1989) Stability of a rotating, pre-twisted, non-uniform cantilever beam with tip mass and thermal gradient subjected to a non-conservative force. Comput Struct 33(2):499–507

    Article  MathSciNet  MATH  Google Scholar 

  10. Kuo YH, Wu TH, Lee SY (1992) Bending vibrations of a rotating non-uniform beam with tip mass and an elastically restrained root. Comput Struct 42(2):229–236

    Article  Google Scholar 

  11. Lee SY, Lin SM, Wu CT (2004) Free vibration of a rotating non-uniform beam with arbitrary pretwist, an elastically restrained root and a tip mass. J Sound Vib 273(3):477–492

    Article  ADS  MathSciNet  Google Scholar 

  12. Hamdan MN, Jubran BA (1991) Free and forced vibrations of a restrained uniform beam carrying an intermediate lumped mass and a rotary inertia. J Sound Vib 150(2):203–216

    Article  ADS  Google Scholar 

  13. Hamdan MN, Abdel Latif L (1994) On the numerical convergence of discretization methods for the free vibrations of beams with attached inertia elements. J Sound Vib 169(4):527–545

    Article  ADS  MATH  Google Scholar 

  14. Hamdan MN, Shabaneh NH (1997) On the large amplitude free vibrations of a restrained uniform beam carrying an intermediate lumped mass. J Sound Vib 199(5):711–736

    Article  ADS  Google Scholar 

  15. Hamdan MN, Dado MHF (1997) Large amplitude free vibrations of a uniform cantilever beam carrying an intermediate lumped mass and rotary inertia. J Sound Vib 206(2):151–168

    Article  ADS  Google Scholar 

  16. Chung J, Yoo HH (2002) Dynamic analysis of a rotating cantilever beam using the finite element method. J Sound Vib 249(1):147–164

    Article  ADS  Google Scholar 

  17. Gunda JB, Ganguli R (2008) New rational interpolation functions for finite element analysis of rotating beams. Int J Mech Sci 50:578–588

    Article  MATH  Google Scholar 

  18. Cheng Y, Yu ZG, Wu X, Yuan Y (2011) Vibration analysis of a cracked rotating tapered beam using the p-version finite element method. Finite Elem Anal Des 47:825–834

    Article  MathSciNet  Google Scholar 

  19. Mohanty SC, Dash RR, Rout T (2013) Free vibration of a functionally graded rotating Timoshenko beam using FEM. Adv Struct Eng 16(2):405–418

    Article  Google Scholar 

  20. Huang KJ, Liu TS (2001) Dynamic analysis of rotating beams with nonuniform cross sections using the dynamic stiffness method. J Vib Acoust 123(4):536–539

    Article  Google Scholar 

  21. Özdemir Ö, Kaya MO (2006) Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli–Euler beam by differential transform method. J Sound Vib 289(2):413–420

    Article  ADS  MATH  Google Scholar 

  22. Meirovitch L (1980) Computational methods in structural dynamics. Sijthoff & Noordhoff, Alphen aan den Rijn, Rockville

    MATH  Google Scholar 

  23. Lauzon DM, Murthy VR (1993) Determination of vibration characteristics of multiple-load-path blades by a modified Galerkin’s method. Comput Struct 46(6):1007–1020

    Article  ADS  MATH  Google Scholar 

  24. Ganesh R, Ganguli R (2013) Stiff string approximations in Rayleigh–Ritz method for rotating beams. Appl Math Comput 219:9282–9295

    MathSciNet  MATH  Google Scholar 

  25. Surace G, Anghe V, Mares C (1997) Coupled bending–bending–torsion vibration analysis of rotating pretwisted blades: an integral formulation and numerical examples. J Sound Vib 206(4):473–486

    Article  ADS  Google Scholar 

  26. Petre A (1973) Theory of the aeroelasticity-dynamic periodic phenomena (in Romanian). Romanian Academy Publishing House, Bucharest

    Google Scholar 

  27. Dowell EH, Curtiss Jr HC, Scanlan RH, Sisto F (1978) A modern course in aeroelasticity. Sijthoff & Noordhooff, Alphen aan der Rijn, Rockville

    MATH  Google Scholar 

  28. Hodges DH, Dowell EH (1974) Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades. NASA, Technical Note D-7818

  29. Lee SY, Sheu JJ (2007) Free vibrations of a rotating inclined beam. J Appl Mech 74:406–414

    Article  MATH  Google Scholar 

  30. Lacarbonara W, Arvin H, Bakhtiari-Nejad F (2012) A geometrically exact approach to the overall dynamics of elastic rotating blades-part 1: linear modal properties. Nonlinear Dyn 70(1):659–675

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11372257, 11302183), Shanghai Key Laboratory of Mechanics in Energy Engineering, Sichuan Province Project for the Young Research Group of Scientific and Technological Innovations (2013), the Anhui Province Natural Science Foundation (1308085MA13), the Scientific Research Foundation for Returned Overseas Chinese Scholars, and Research Project Funds of Anhui University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Li.

Appendix: Parametric distributions of the blade

Appendix: Parametric distributions of the blade

The parametric distributions of the blade adopted in this work are shown in Fig. 8.

Fig. 8
figure 8

Parametric distributions of the blade. a mass per unit length; b built-in twist angle; c thicknesswise bending rigidity; d chordwise bending rigidity; e axial rigidity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Li, Y.H., Liu, Q.K. et al. Effect of balance weight on dynamic characteristics of a rotating wind turbine blade. J Eng Math 97, 49–65 (2016). https://doi.org/10.1007/s10665-015-9796-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-015-9796-8

Keywords

Navigation