Skip to main content
Log in

Modeling and dynamic behavior of rotating blades carrying a tip mass and incorporating adaptive capabilities

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The problems of the mathematical modeling and dynamical behavior of rotating blades carrying a tip mass and incorporating adaptive capabilities are considered. The blade is modeled as a thinwalled beam incorporating non-classical features such as anisotropy, transverse shear, secondary warping, and includes the centrifugal and Coriolis force fields. For non-adaptive rotating blades, a thorough validation of the structural model and solution methodology is accomplished. The adaptive capabilities provided by a system of piezoactuators bonded or embedded into the structure are also implemented. Based on the converse piezoelectric effect, the piezoactuators produce a localized strain field in response to an applied voltage, and, as a result, an adaptive change of the dynamic response characteristics is obtained. A combined feedback control law relating the piezoelectrically induced bending moment at the beam tip with the kinematical response quantities appropriately selected is used, and its beneficial effects upon the closed-loop eigenvibration characteristics are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodges, D. H.: Review of composite rotor blade modeling. AIAA J.28, 561–565 (1990).

    Google Scholar 

  2. Rosen, A.: Structural and dynamic behavior of pretwisted rods and beams. Appl. Mech. Rev.44, 483–515 (1991).

    Google Scholar 

  3. Ewins, D. J., Henry, R.: Structural dynamic characteristics of individual blades. In: Vibration and rotor dynamics. Von Kármán Institute for Fluid Dynamics, Lecture Series 1992-06, 14.1–14.27 (1992).

  4. Kunz, D. L.: Survey and comparison of engineering beam theories for helicopter rotor blades. J. Aircraft31, 473–479 (1994).

    Google Scholar 

  5. Rand, O.: Analysis of composite rotor blades. In: Numerical analysis and modelling of composite materials (Bull, J. W. ed.), 1–26. Blackie Academic and Professional: Chapman and Hall 1996.

  6. Librescu, L., Song, O.: Behavior of thin-walled beams made of advanced composite materials and incorporating non-classical effects. Appl. Mech. Rev.44, 174–180 (1991).

    Google Scholar 

  7. Song, O., Librescu, L.: Free vibration of anisotropic composite thin-walled beams of closed crosssection contour. J. Sound-Vibr.167, 129–147 (1993).

    Google Scholar 

  8. Librescu, L., Song, O., Rogers, C. A.: On adaptive vibrational behavior of cantilevered structures modelled as composite thin-walled beams. Int. J. Eng. Sci.31, 775–792 (1993).

    Google Scholar 

  9. Song, O., Librescu, L., Rogers, C. A.: Adaptive response control of cantilevered thin-walled beams carrying heavy concentrated masses. J. Intell. Mat. Systems Struct.5, 42–48 (1994).

    Google Scholar 

  10. Song, O., Librescu, L.: Bending vibrations of adaptive cantilevers with external stores. Int. J. Mech. Sci.28, 483–498 (1996).

    Google Scholar 

  11. Maugin, G. A.: Continuum mechanics and electromagnetic solids. Amsterdam: North-Holland 1988.

    Google Scholar 

  12. Librescu, L.: Elasto-statics and kinetics of anisotropic and heterogeneous shell-type structures. Netherlands: Noordhoff 1975.

    Google Scholar 

  13. Giurgiutiu, V., Stafford, R. O.: Semi-analytic methods for frequencies and mode shapes of rotor blades. Vertica1, 291–306 (1977).

    Google Scholar 

  14. Stafford, R. O., Giurgiutiu, V.: Semi-analytic methods for rotating Timoshenko beams. Int. J. Mech. Sci.17, 719–727 (1975).

    Google Scholar 

  15. Birman, V.: Analytical models of sandwich plates with piezoelectric strip stiffeners. Int. J. Mech. Sci.36, 567–578 (1994).

    Google Scholar 

  16. Lin, C. Y., Crawley, E. F.: Aeroelastic actuation using elastic and induced strain anisotropy. J. Aircraft32, 1130–1137 (1995).

    Google Scholar 

  17. Tzou, H. S.: Piezoelectric shells, distributed sensing and control of continua. Dordrecht/Boston/London: Kluwer 1993.

    Google Scholar 

  18. Tzou, H. S., Zhong, J. R.: Adaptive piezoelectric shell structures: theory and experiments. 32nd AIAA SDM Conference, Baltimore, Maryland, April 8–12, Paper No. AIAA-91-1238, 1991.

  19. Librescu, L., Thangjitham, S.: Analytical studies on static aeroelastic characteristics for composite forward-swept wing aircraft. J. Aircraft28, 151–157 (1991).

    Google Scholar 

  20. Wang, J. T. S., Mahrenholtz, O., Böhm, J.: Extended Galerkin's method for rotating beam vibrations using Legendre polynomials. Solid Mech. Arch.1, 341–356 (1976).

    Google Scholar 

  21. Hodges, D. H.: An approximate formula for the fundamental frequency of a uniform rotating beam clamped off the axis of rotation. J. Sound Vibr.77, 11–18 (1981).

    Google Scholar 

  22. Yokoyama, T., Markiewicz, M.: Flexural vibrations of a rotating Timoshenko beam with tip mass. AIAA-Pacific Vibration Conference, 1993, Kitakyushu, Japan, November 1993.

  23. Peters, D. A.: An approximate solution for the free vibrations of rotating uniform cantilever beams. NASA TMX-62, 229, September 1973.

  24. Hodges, D. H., Rutkowski, M. J.: Free-vibration analysis of rotating beams by a variable-order finite element method. AIAA J.19, 1459–1466 (1981).

    Google Scholar 

  25. Du, H., Lim, M. K., Liew, K. M.: A power series solution for vibration of a rotating Timoshenko beam. J. Sound Vibr.175, 505–523 (1994).

    Google Scholar 

  26. Wright, A. D., Smith, C. E., Thresher, R. W., Wang, J. L. C.: Vibration modes of centrifugally stiffened beams. J. Appl. Mech.49, 197–202 (1982).

    Google Scholar 

  27. Lee, H. P.: Vibration of an inclined rotating cantilever beam with tip mass. J. Vibr. Acoust.115, 241–245 (1993).

    Google Scholar 

  28. Kumar, R.: Vibration of space booms under centrifugal force field. Canadian Aeronautics and Space Institute (CASI) Trans.7, 1–5 (1974).

    Google Scholar 

  29. Boyce, W., Handelman, G. H.: Vibration of rotating beams with tip mass. ZAMP12, 369–392 (1961).

    Google Scholar 

  30. Hoa, S. V.: Vibration of a rotating beam with tip mass. J. Sound Vibr.67, 369–381 (1979).

    Google Scholar 

  31. Bhat, R. B.: Transverse vibrations of a rotating uniform cantilever with tip mass as predicted by using beam characteristics orthogonal polynomials in the Rayleigh-Ritz method. J. Sound Vibr.105, 199–210 (1986).

    Google Scholar 

  32. Berlincourt, D. A., Curran, D. R., Jaffe, H.: Piezoelectric and piezomagnetic materials and their function in transducers. In: Physical acoustics-priciples and methods (Mason, W. P., ed.) vol. 1, Part A, pp. 169–270. New York London: Academic Press 1964.

    Google Scholar 

  33. Johnson, W.: Helicopter theory. Princeton: Princeton University Press 1980.

    Google Scholar 

  34. Peters, D. A.: Aeroelastic response of rotorcraft. In: A modern course in aeroelasticity, 3rd ed. (Dowell, E. H. ed.). Dordrecht: Kluwer 1995.

    Google Scholar 

  35. Bezzel, Ch., Hammel-Haider, G., Swennen, L.: Wittgenstein: eine Ausstellung der Wiener Secession. Bd. 1: Biographie, Praxis. Wien: Wiener Secession 1989.

    Google Scholar 

  36. Song, O., Librescu, L.: Structural modeling and free vibration analysis of rotating composite thin walled beams. J. Am. Helicopter Soc.42, 358–369 (1997).

    Google Scholar 

  37. Irschik, H., Schlacher, K., Haas, W.: Output annihilation and optimal H2-control of plate vibrations by piezoelectric actuation. In: IUTAM Symposium on Interaction between Dynamics and Control in Advanced Mechanical Systems (van Kampen, ed.), pp. 159–166. Dordrecht: Kluwer 1997.

    Google Scholar 

  38. Crawley, E. F.: Intelligent structures for aerospace; a technology overview and assessment. AIAA J.32, 1689–1699 (1994).

    Google Scholar 

  39. Rao, S. S., Sunar, M.: Piezoelectricity and its use in disturbance sensing and control of flexible structures: a survey. Appl. Mech. Rev.31, 113–123 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. Dr. h. c. Franz Ziegler on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, O., Librescu, L. Modeling and dynamic behavior of rotating blades carrying a tip mass and incorporating adaptive capabilities. Acta Mechanica 134, 169–197 (1999). https://doi.org/10.1007/BF01312654

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01312654

Keywords

Navigation