Skip to main content
Log in

Unlocking the potential of magnetic biochar in wastewater purification: a review on the removal of bisphenol A from aqueous solution

  • Review
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Bisphenol A (BPA) is an essential and extensively utilized chemical compound with significant environmental and public health risks. This review critically assesses the current water purification techniques for BPA removal, emphasizing the efficacy of adsorption technology. Within this context, we probe into the synthesis of magnetic biochar (MBC) using co-precipitation, hydrothermal carbonization, mechanical ball milling, and impregnation pyrolysis as widely applied techniques. Our analysis scrutinizes the strengths and drawbacks of these techniques, with pyrolytic temperature emerging as a critical variable influencing the physicochemical properties and performance of MBC. We explored various modification techniques including oxidation, acid and alkaline modifications, element doping, surface functional modification, nanomaterial loading, and biological alteration, to overcome the drawbacks of pristine MBC, which typically exhibits reduced adsorption performance due to its magnetic medium. These modifications enhance the physicochemical properties of MBC, enabling it to efficiently adsorb contaminants from water. MBC is efficient in the removal of BPA from water. Magnetite and maghemite iron oxides are commonly used in MBC production, with MBC demonstrating effective BPA removal fitting well with Freundlich and Langmuir models. Notably, the pseudo-second-order model accurately describes BPA removal kinetics. Key adsorption mechanisms include pore filling, electrostatic attraction, hydrophobic interactions, hydrogen bonding, π-π interactions, and electron transfer surface interactions. This review provides valuable insights into BPA removal from water using MBC and suggests future research directions for real-world water purification applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data used in the current manuscript will be available in the public domain and can be provided/shared on request.

References

  • Abdel Maksoud, M. I. A., Elgarahy, A. M., Farrell, C., Al-Muhtaseb, A. H., Rooney, D. W., & Osman, A. I. (2020). Insight on water remediation application using magnetic nanomaterials and biosorbents. Coordination Chemistry Reviews, 403, 213096. https://doi.org/10.1016/j.ccr.2019.213096

    Article  CAS  Google Scholar 

  • Abu Hasan, H., Muhamad, M. H., Budi Kurniawan, S., Buhari, J., & Husain Abuzeyad, O. (2023). Managing bisphenol A contamination: Advances in removal technologies and future prospects. Water (switzerland), 15(20), 1–34. https://doi.org/10.3390/w15203573

    Article  CAS  Google Scholar 

  • Ahmad, A., Singh, A. P., Khan, N., Chowdhary, P., Giri, B. S., Varjani, S., & Chaturvedi, P. (2021). Bio-composite of Fe-sludge biochar immobilized with Bacillus sp. in packed column for bio-adsorption of methylene blue in a hybrid treatment system: Isotherm and kinetic evaluation. Environmental Technology & Innovation, 23, 101734. https://doi.org/10.1016/j.eti.2021.101734

    Article  CAS  Google Scholar 

  • Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., Johir, M. A. H., & Sornalingam, K. (2017). Single and competitive sorption properties and mechanism of functionalized biochar for removing sulfonamide antibiotics from water. Chemical Engineering Journal, 311, 348–358. https://doi.org/10.1016/j.cej.2016.11.106

    Article  CAS  Google Scholar 

  • Ahsan, M. A., Jabbari, V., Islam, M. T., Turley, R. S., Dominguez, N., Kim, H., Castro, E., Hernandez-Viezcas, J. A., Curry, M. L., Lopez, J., Gardea-Torresdey, J. L., & Noveron, J. C. (2019). Sustainable synthesis and remarkable adsorption capacity of MOF/graphene oxide and MOF/CNT based hybrid nanocomposites for the removal of bisphenol A from water. Science of the Total Environment, 673, 306–317. https://doi.org/10.1016/j.scitotenv.2019.03.219

    Article  CAS  Google Scholar 

  • Al-Rifai, J. H., Khabbaz, H., & Schäfer, A. I. (2011). Removal of pharmaceuticals and endocrine disrupting compounds in a water recycling process using reverse osmosis systems. Separation and Purification Technology, 77(1), 60–67. https://doi.org/10.1016/j.seppur.2010.11.020

    Article  CAS  Google Scholar 

  • Amusat, S. O., Kebede, T. G., Dube, S., & Nindi, M. M. (2021). Ball-milling synthesis of biochar and biochar–based nanocomposites and prospects for removal of emerging contaminants: A review. Journal of Water Process Engineering, 41(December 2020), 101993. https://doi.org/10.1016/j.jwpe.2021.101993

    Article  Google Scholar 

  • Attia, C., & Lima, E. C. (2018). Removal of emerging contaminants from the environment by adsorption. Ecotoxicology and Environmental Safety, 150(December 2017), 1–17. https://doi.org/10.1016/j.ecoenv.2017.12.026

    Article  CAS  Google Scholar 

  • Baldikova, E., Pospiskova, K., & Safarik, I. (2020). Removal of bisphenol a using magnetically responsive spruce Chip biochar. Chemical Engineering and Technology, 43, 168–171. https://doi.org/10.1002/ceat.201800616

  • Becker, D., Rodriguez-mozaz, S., Insa, S., Schoevaart, R., Barcelo, D., Cazes, M. D., Belleville, M. P., Marcano, J. S., Misovic, A., Oehlmann, J., & Wagner, M. (2017). Removal of endocrine disrupting chemicals in wastewater by enzymatic treatment with fungal laccases. Organic Process Research & Development, 21(4), 480–491.

    Article  CAS  Google Scholar 

  • Bernal, V., Giraldo, L., Moreno-Piraján, J. C., Balsamo, M., & Erto, A. (2019). Mechanisms of methylparaben adsorption onto activated carbons: Removal tests supported by a calorimetric study of the adsorbent–adsorbate interactions. Molecules, 24, 1–21. https://doi.org/10.3390/molecules24030413

  • Bing-zhi, D., Hua-qiang, C., Lin, W., Sheng-ji, X., & Nai-yun, G. (2010). The removal of bisphenol A by hollow fiber microfiltration membrane. Desalination, 250(2), 693–697. https://doi.org/10.1016/j.desal.2009.05.022

    Article  CAS  Google Scholar 

  • Bombuwala Dewage, N., Liyanage, A. S., Smith, Q., Pittman, C. U., Perez, F., Hassan, E. B., Mohan, D., & Mlsna, T. (2019). Fast aniline and nitrobenzene remediation from water on magnetized and nonmagnetized Douglas fir biochar. Chemosphere, 225, 943–953. https://doi.org/10.1016/j.chemosphere.2019.03.050

    Article  CAS  Google Scholar 

  • Cai, W., Wei, J., Li, Z., Liu, Y., Zhou, J., & Han, B. (2019). Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr(VI) by a mild one-step hydrothermal method from peanut hull. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 563(November 2018), 102–111. https://doi.org/10.1016/j.colsurfa.2018.11.062

    Article  CAS  Google Scholar 

  • Cai, W., Wei, J., Li, Z., Liu, Y., Zhou, J., & Han, B. (2019). Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr(VI) by a mild one-step hydrothermal method from peanut hull. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 563(October 2018), 102–111. https://doi.org/10.1016/j.colsurfa.2018.11.062

    Article  CAS  Google Scholar 

  • Chai, W. S., Cheun, J. Y., Kumar, P. S., Mubashir, M., Majeed, Z., Banat, F., Ho, S. H., & Show, P. L. (2021). A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. Journal of Cleaner Production, 296, 126589. https://doi.org/10.1016/j.jclepro.2021.126589

    Article  CAS  Google Scholar 

  • Chen, T., Luo, L., Deng, S., Shi, G., Zhang, S., Zhang, Y., Deng, O., Wang, L., Zhang, J., & Wei, L. (2018). Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure. Bioresource Technology, 267(July), 431–437. https://doi.org/10.1016/j.biortech.2018.07.074

    Article  CAS  Google Scholar 

  • Chen, D., Wang, Q., Li, Y., Li, Y., Zhou, H., & Fan, Y. (2020a). A general linear free energy relationship for predicting partition coefficients of neutral organic compounds. Chemosphere, 247, 125869. https://doi.org/10.1016/j.chemosphere.2020.125869

    Article  CAS  Google Scholar 

  • Chen, T., Quan, X., Ji, Z., Li, X., & Pei, Y. (2020b). Synthesis and characterization of a novel magnetic calcium-rich nanocomposite and its remediation behaviour for As(III) and Pb(II) co-contamination in aqueous systems. Science of the Total Environment, 706, 135122. https://doi.org/10.1016/j.scitotenv.2019.135122

    Article  CAS  Google Scholar 

  • Chen, G., Wang, H., Han, L., Yang, N., Hu, B., Qiu, M., & Zhong, X. (2021a). Highly efficient removal of U(VI) by a novel biochar supported with FeS nanoparticles and chitosan composites. Journal of Molecular Liquids, 327, 114807. https://doi.org/10.1016/j.molliq.2020.114807

    Article  CAS  Google Scholar 

  • Chen, H., Yang, X., Liu, Y., Lin, X., Wang, J., Zhang, Z., Li, N., Li, Y., & Zhang, Y. (2021b). KOH modification effectively enhances the Cd and Pb adsorption performance of N-enriched biochar derived from waste chicken feathers. Waste Management, 130, 82–92. https://doi.org/10.1016/j.wasman.2021.05.015

    Article  CAS  Google Scholar 

  • Chen, K., Zhou, L., Xu, W., Hu, Z., Jia, M., & Liu, L. (2022). A novel way of activating peroxysulfate by zero-valent copper and ferroferric oxide co-modified biochar to remove bisphenol A in aqueous solution: Performance, mechanism and potential toxicity. Applied Catalysis A: General, 636(November 2021), 118575. https://doi.org/10.1016/j.apcata.2022.118575

    Article  CAS  Google Scholar 

  • Cheng, J., Hu, S. C., Sun, G. T., Geng, Z. C., & Zhu, M. Q. (2021a). The effect of pyrolysis temperature on the characteristics of biochar, pyroligneous acids, and gas prepared from cotton stalk through a polygeneration process. Industrial Crops and Products, 170(March), 113690. https://doi.org/10.1016/j.indcrop.2021.113690

    Article  CAS  Google Scholar 

  • Cheng, N., Wang, B., Wu, P., Lee, X., Xing, Y., Chen, M., & Gao, B. (2021b). Adsorption of emerging contaminants from water and wastewater by modified biochar: A review. Environmental Pollution, 273, 116448. https://doi.org/10.1016/j.envpol.2021.116448

    Article  CAS  Google Scholar 

  • Cho, D.-W., Jeong, K.-H., Kim, S., Tsang, D. C. W., Ok, Y. S., & Song, H. (2018). Synthesis of cobalt-impregnated carbon composite derived from a renewable resource: Characterization and catalytic performance evaluation. Science of the Total Environment, 612, 103–110.

    Article  CAS  Google Scholar 

  • Choi, Y. K., & Kan, E. (2019). Effects of pyrolysis temperature on the physicochemical properties of alfalfa-derived biochar for the adsorption of bisphenol A and sulfamethoxazole in water. Chemosphere, 218, 741–748. https://doi.org/10.1016/j.chemosphere.2018.11.151

    Article  CAS  Google Scholar 

  • Chu, J. H., Kang, J. K., Park, S. J., & Lee, C. G. (2021). Enhanced sonocatalytic degradation of bisphenol A with a magnetically recoverable biochar composite using rice husk and rice bran as substrate. Journal of Environmental Chemical Engineering, 9(4), 105284. https://doi.org/10.1016/j.jece.2021.105284

    Article  CAS  Google Scholar 

  • Cui, X., Zhang, S. S., Gen, Y., Zhen, J., Zhan, J., Cao, C., & Ni, S. Q. (2021). Synergistic catalysis by Fe O - biochar/peroxymonosulfate system for the removal of bisphenol a. Separation and Purification Technology, 276, 119351. https://doi.org/10.1016/j.seppur.2021.119351

  • Dai, J., Wang, Z., Chen, K., Ding, D., Yang, S., & Cai, T. (2023). Applying a novel advanced oxidation process of biochar activated periodate for the efficient degradation of bisphenol A: Two nonradical pathways. Chemical Engineering Journal, 453(P2), 139889. https://doi.org/10.1016/j.cej.2022.139889

    Article  CAS  Google Scholar 

  • Deng, F., Olvera-Vargas, H., Garcia-Rodriguez, O., Zhu, Y., Jiang, J., Qiu, S., & Yang, J. (2019). Waste-wood-derived biochar cathode and its application in electro-Fenton for sulfathiazole treatment at alkaline pH with pyrophosphate electrolyte. Journal of Hazardous Materials, 377(May), 249–258. https://doi.org/10.1016/j.jhazmat.2019.05.077

    Article  CAS  Google Scholar 

  • Du, Z. D., Cui, Y. Y., Yang, C. X., & Yan, X. P. (2020). Synthesis of magnetic amino-functionalized microporous organic network composites for magnetic solid phase extraction of endocrine disrupting chemicals from water, beverage bottle and juice samples. Talanta, 206(July 2019), 120179. https://doi.org/10.1016/j.talanta.2019.120179

    Article  CAS  Google Scholar 

  • Dutta, S., Gupta, B., Srivastava, S. K., & Gupta, A. K. (2021). Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Materials Advances, 2(14), 4497–4531. https://doi.org/10.1039/d1ma00354b

    Article  CAS  Google Scholar 

  • Fang, Q., Ye, S., Yang, H., Yang, K., Zhou, J., Gao, Y., Lin, Q., Tan, X., & Yang, Z. (2021). Application of layered double hydroxide-biochar composites in wastewater treatment: Recent trends, modification strategies, and outlook. Journal of Hazardous Materials, 420(July), 126569. https://doi.org/10.1016/j.jhazmat.2021.126569

    Article  CAS  Google Scholar 

  • Fakkaew, K., Koottatep, T., & Polprasert, C. (2018). Faecal sludge treatment and utilization by hydrothermal carbonization. Journal of Environmental Management, 216, 421–426. https://doi.org/10.1016/j.jenvman.2017.09.031

  • Feng, Z., Yuan, R., Wang, F., Chen, Z., Zhou, B., & Chen, H. (2021). Preparation of magnetic biochar and its application in catalytic degradation of organic pollutants: A review. Science of the Total Environment, 765, 142673. https://doi.org/10.1016/j.scitotenv.2020.142673

    Article  CAS  Google Scholar 

  • Frontistis, Z., Fatta-kassinos, D., & Xekoukoulotakis, N. P. (2012). Photocatalytic degradation of 17α-ethynylestradiol in environmental samples by ZnO under simulated solar radiation. https://doi.org/10.1002/jctb.3751

  • Gao, X., Yang, S., Hu, L., Cai, S., Wu, L., & Kawi, S. (2022). Carbonaceous materials as adsorbents for CO2 capture: Synthesis and modification. Carbon Capture Science & Technology, 3(February), 100039. https://doi.org/10.1016/j.ccst.2022.100039

    Article  CAS  Google Scholar 

  • Grassi, M., Kaykioglu, G., Belgiorno, V., & Lofrano, G. (2012). Removal of emerging contaminants from water and wastewater by adsorption process. In G. Lofrano (Ed.), Emerging compounds removal from wastewater (pp. 15–37). Springer. https://doi.org/10.1007/978-94-007-3916-1_2

  • Godwin, P. M., Pan, Y., Xiao, H., & Afzal, M. T. (2019). Progress in preparation and application of modified biochar for improving heavy metal ion removal from wastewater. Journal of Bioresources and Bioproducts, 4(1), 31–42. https://doi.org/10.21967/jbb.v4i1.180

    Article  CAS  Google Scholar 

  • Hairuddin, M. N., Mubarak, N. M., Khalid, M., Abdullah, E. C., Walvekar, R., & Karri, R. R. (2019). Magnetic palm kernel biochar potential route for phenol removal from wastewater. Environmental Science and Pollution Research, 26(34), 35183–35197. https://doi.org/10.1007/s11356-019-06524-w

    Article  CAS  Google Scholar 

  • Han, Y., Cao, X., Ouyang, X., Sohi, S. P., & Chen, J. (2016). Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: Effects of production conditions and particle size. Chemosphere, 145, 336–341.https://doi.org/10.1016/j.chemosphere.2015.11.050

  • He, J., Tang, J., Zhang, Z., Wang, L., Liu, Q., & Liu, X. (2021). Magnetic ball-milled FeS@biochar as persulfate activator for degradation of tetracycline. Chemical Engineering Journal, 404(June 2020), 126997. https://doi.org/10.1016/j.cej.2020.126997

    Article  CAS  Google Scholar 

  • He, X., Yang, X., Zhang, C., Xiao, Y., & Tang, Y. (2023). Catalytic degradation of bisphenol A by heterogeneous bimetal composite carbon in the PMS and H2O2 systems: Performance and mechanism. Journal of Cleaner Production, 414(1239), 137571. https://doi.org/10.1016/j.jclepro.2023.137571

    Article  CAS  Google Scholar 

  • Heo, J., Yoon, Y., Lee, G., Kim, Y., Han, J., & Park, C. M. (2019). Enhanced adsorption of bisphenol A and sulfamethoxazole by a novel magnetic CuZnFe2O4–biochar composite. Bioresource Technology, 281(2019), 179–187. https://doi.org/10.1016/j.biortech.2019.02.091

    Article  CAS  Google Scholar 

  • Ho, K. C., Teow, Y. H., Ang, W. L., & Mohammad, A. W. (2017). An overview of electrically-enhanced membrane bioreactor (EMBR) for fouling suppression. Journal of Engineering Science and Technology Review, 10(3), 128–138. https://doi.org/10.25103/jestr.103.18

    Article  CAS  Google Scholar 

  • Hu, Y., Zhu, Q., Yan, X., Liao, C., & Jiang, G. (2019). Occurrence, fate and risk assessment of BPA and its substituents in wastewater treatment plant : A review. Environmental Research, 178, 108732. https://doi.org/10.1016/j.envres.2019.108732

  • Huang, R. P., Liu, Z. H., Yuan, S. F., Yin, H., Dang, Z., & Wu, P. X. (2017). Worldwide human daily intakes of bisphenol A (BPA) estimated from global urinary concentration data (2000–2016) and its risk analysis. Environmental Pollution, 230, 143–152. https://doi.org/10.1016/j.envpol.2017.06.026

    Article  CAS  Google Scholar 

  • Huang, J., Cao, Y., Wen, H., Zhang, J., Wang, H., Yu, H., & Peng, F. (2019a). Unraveling the intrinsic enhancement of fluorine doping in the dual-doped magnetic carbon adsorbent for the environmental remediation. Journal of Colloid and Interface Science, 538, 327–339. https://doi.org/10.1016/j.jcis.2018.12.002

    Article  CAS  Google Scholar 

  • Huang, Q., Song, S., Chen, Z., Hu, B., Chen, J., & Wang, X. (2019b). Biochar-based materials and their applications in removal of organic contaminants from wastewater: State-of-the-art review. Biochar, 1(1), 45–73.

    Article  Google Scholar 

  • Huang, W. H., Lee, D. J., & Huang, C. (2021). Modification on biochars for applications: A research update. Bioresource Technology, 319(August 2020), 124100. https://doi.org/10.1016/j.biortech.2020.124100

    Article  CAS  Google Scholar 

  • Huang, Z., Yi, Y., Zhang, N., Tsang, P. E., & Fang, Z. (2022). Removal of fluconazole from aqueous solution by magnetic biochar treated by ball milling: Adsorption performance and mechanism. Environmental Science and Pollution Research, 29(22), 33335–33344. https://doi.org/10.1007/s11356-021-17964-8

    Article  CAS  Google Scholar 

  • Islam, M. A., Asif, M., & Hameed, B. H. (2015). Pyrolysis kinetics of raw and hydrothermally carbonized Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis. Bioresource Technology, 179, 227–233. https://doi.org/10.1016/j.biortech.2014.11.115

  • Jia, L., Yu, Y., Li, Z. P., Qin, S. N., Guo, J. R., Zhang, Y. Q., Wang, J. C., Zhang, J. C., Fan, B. G., & Jin, Y. (2021). Study on the Hg0 removal characteristics and synergistic mechanism of iron-based modified biochar doped with multiple metals. Bioresource Technology, 332(March), 125086. https://doi.org/10.1016/j.biortech.2021.125086

    Article  CAS  Google Scholar 

  • Jiang, S. F., Ling, L. L., Chen, W. J., Liu, W. J., Li, D. C., & Jiang, H. (2019). High efficient removal of bisphenol A in a peroxymonosulfate/iron functionalized biochar system: Mechanistic elucidation and quantification of the contributors. Chemical Engineering Journal, 359(August 2018), 572–583. https://doi.org/10.1016/j.cej.2018.11.124

    Article  CAS  Google Scholar 

  • Jiang, S. F., Ling, L. L., Chen, W. J., Liu, W. J., Li, D. C., & Jiang, H. (2019b). High efficient removal of bisphenol A in a peroxymonosulfate/iron functionalized biochar system: Mechanistic elucidation and quantification of the contributors. Chemical Engineering Journal, 359, 572–583. https://doi.org/10.1016/j.cej.2018.11.124

    Article  CAS  Google Scholar 

  • Jing, X. R., Wang, Y. Y., Liu, W. J., Wang, Y. K., & Jiang, H. (2014). Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chemical Engineering Journal, 248, 168–174. https://doi.org/10.1016/j.cej.2014.03.006

    Article  CAS  Google Scholar 

  • Kadhom, M., & Deng, B. (2018). Metal-organic frameworks (MOFs) in water filtration membranes for desalination and other applications. Applied Materials Today, 11, 219–230. https://doi.org/10.1016/j.apmt.2018.02.008

  • Karunanayake, A. G., Todd, O. A., Crowley, M. L., Ricchetti, L. B., Pittman, C. U., Anderson, R., & Mlsna, T. E. (2017). Rapid removal of salicylic acid, 4-nitroaniline, benzoic acid and phthalic acid from wastewater using magnetized fast pyrolysis biochar from waste Douglas fir. Chemical Engineering Journal, 319, 75–88. https://doi.org/10.1016/j.cej.2017.02.116

    Article  CAS  Google Scholar 

  • Katibi, K. K., Yunos, K. F., Man, H. C., Aris, A. Z., Nor, M. Z. M., & Azis, R. S. (2021a). An insight into a sustainable removal of bisphenol a from aqueous solution by novel palm kernel shell magnetically induced biochar: Synthesis, characterization, kinetic, and thermodynamic studies. Polymers, 13(21), 3781. https://doi.org/10.3390/polym13213781

    Article  CAS  Google Scholar 

  • Katibi, K. K., Yunos, K. F., Man, H. C., Aris, A. Z., Zuhair, M., Nor, M., Azis, R. S., & Umar, A. M. (2021b). Contemporary techniques for remediating endocrine-disrupting compounds in various water sources : Advances in treatment methods and their limitations. Polymers, 13, 3229.

    Article  CAS  Google Scholar 

  • Katibi, K. K., Yunos, K. F., Man, H. C., Aris, A. Z., Zuhair, M., & Syahidah, R. (2021c). Recent advances in the rejection of endocrine-disrupting compounds from water using membrane and membrane bioreactor technologies : A review. Polymers, 13, 392.

    Article  CAS  Google Scholar 

  • Khan, Z. H., Gao, M., Qiu, W., Islam, M. S., & Song, Z. (2020). Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution. Chemosphere, 246, 125701.

    Article  CAS  Google Scholar 

  • Khanzada, N. K., Farid, M. U., Kharraz, J. A., Choi, J., Tang, C. Y., Nghiem, L. D., Jang, A., & An, A. K. (2020). Removal of organic micropollutants using advanced membrane-based water and wastewater treatment: A review. Journal of Membrane Science, 598(August 2019), 117672. https://doi.org/10.1016/j.memsci.2019.117672

    Article  CAS  Google Scholar 

  • Lee, C. C., Jiang, L. Y., Kuo, Y. L., Chen, C. Y., Hsieh, C. Y., Hung, C. F., & Tien, C. J. (2015). Characteristics of nonylphenol and bisphenol A accumulation by fish and implications for ecological and human health. Science of the Total Environment, 502, 417–425. https://doi.org/10.1016/j.scitotenv.2014.09.042

    Article  CAS  Google Scholar 

  • Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems - A review. Mitigation and Adaptation Strategies for Global Change, 11(2), 403–427. https://doi.org/10.1007/s11027-005-9006-5

    Article  Google Scholar 

  • Li, S., Zhang, G., Wang, P., Zheng, H., & Zheng, Y. (2016). Microwave-enhanced Mn-Fenton process for the removal of BPA in water. Chemical Engineering Journal, 294, 371–379. https://doi.org/10.1016/j.cej.2016.03.006

    Article  CAS  Google Scholar 

  • Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017a). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466–478. https://doi.org/10.1016/j.chemosphere.2017.03.072

    Article  CAS  Google Scholar 

  • Li, H., Mahyoub, S. A. A., Liao, W., Xia, S., Zhao, H., Guo, M., & Ma, P. (2017b). Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue. Bioresource Technology, 223, 20–26. https://doi.org/10.1016/j.biortech.2016.10.033

    Article  CAS  Google Scholar 

  • Li, M., Liu, H., Chen, T., Dong, C., & Sun, Y. (2019). Synthesis of magnetic biochar composites for enhanced uranium(VI) adsorption. Science of the Total Environment, 651, 1020–1028. https://doi.org/10.1016/j.scitotenv.2018.09.259

    Article  CAS  Google Scholar 

  • Li, X., Wang, C., Zhang, J., Liu, J., Liu, B., & Chen, G. (2020a). Preparation and application of magnetic biochar in water treatment: A critical review. Science of the Total Environment, 711, 134847. https://doi.org/10.1016/j.scitotenv.2019.134847

    Article  CAS  Google Scholar 

  • Li, Y., Ma, S., Xu, S., Fu, H., Li, Z., Li, K., Sheng, K., Du, J., Lu, X., Li, X., & Liu, S. (2020). Novel magnetic biochar as an activator for peroxymonosulfate to degrade bisphenol A: Emphasizing the synergistic effect between graphitized structure and CoFe2O4. Chemical Engineering Journal, 387(September 2019), 124094. https://doi.org/10.1016/j.cej.2020.124094

    Article  CAS  Google Scholar 

  • Li, Y., Ma, S., Xu, S., Fu, H., Li, Z., Li, K., Sheng, K., Du, J., Lu, X., Li, X., & Liu, S. (2020). Novel magnetic biochar as an activator for peroxymonosulfate to degrade bisphenol A: Emphasizing the synergistic effect between graphitized structure and CoFe2O4. Chemical Engineering Journal, 387(January), 124094. https://doi.org/10.1016/j.cej.2020.124094

    Article  CAS  Google Scholar 

  • Li, S., Wu, Y., Zheng, Y., Jing, T., Tian, J., Zheng, H., Wang, N., Nan, J., & Ma, J. (2021). Free-radical and surface electron transfer dominated bisphenol A degradation in system of ozone and peroxydisulfate co-activated by CoFe2O4-biochar. Applied Surface Science, 541(September 2020), 147887. https://doi.org/10.1016/j.apsusc.2020.147887

    Article  CAS  Google Scholar 

  • Li, H., Wang, Y., Jiang, F., Li, M., & Xu, Z. (2023). A dual-function [Ru(bpy)3]2+ encapsulated metal organic framework for ratiometric Al3+ detection and anticounterfeiting application. Dalton Transactions, 52(12), 3846–3854. https://doi.org/10.1039/D2DT03388G

    Article  CAS  Google Scholar 

  • Li, Z., Chen, Y., Wang, Z., Zhao, Y., Xia, Q., Qiu, J., Wang, H., & Wang, J. (2023b). Ionic liquid hybrid metal–organic frameworks for efficient adsorption and selective separation of ammonia at high temperature. Chemical Engineering Journal, 464(April), 142728. https://doi.org/10.1016/j.cej.2023.142728

    Article  CAS  Google Scholar 

  • Liang, L., Xi, F., Tan, W., Meng, X., Hu, B., & Wang, X. (2021). Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar, 3(3), 255–281. https://doi.org/10.1007/s42773-021-00101-6

    Article  CAS  Google Scholar 

  • Liu, L., & Dai, Y. (2021). Strong adsorption of metolachlor by biochar prepared from walnut shells in water. Environmental Science and Pollution Research, 28(35), 48379–48391. https://doi.org/10.1007/s11356-021-14117-9

    Article  CAS  Google Scholar 

  • Liu, Z., & Zhang, F. S. (2011). Removal of copper (II) and phenol from aqueous solution using porous carbons derived from hydrothermal chars. Desalination, 267(1), 101–106. https://doi.org/10.1016/j.desal.2010.09.013

    Article  CAS  Google Scholar 

  • Liu, W., Huang, F., Liao, Y., Zhang, J., Ren, G., Zhuang, Z., Zhen, J., Lin, Z., & Wang, C. (2008). Treatment of Cr VI -containing Mg(OH) 2 Nanowaste. Angewandte Chemie, 120(30), 5701–5704. https://doi.org/10.1002/ange.200800172

    Article  Google Scholar 

  • Lu, H., & Gan, L. (2022). Catalytic degradation of bisphenol A in water by poplar wood powder waste derived biochar via peroxymonosulfate activation. Catalysts, 12(10), 1164. https://doi.org/10.3390/catal12101164

    Article  CAS  Google Scholar 

  • Lu, J., Zhang, C., Wu, J., & Luo, Y. (2017). Adsorptive removal of bisphenol A using N-doped biochar made of Ulva prolifera. Water, Air, and Soil Pollution, 228(9), 1–9. https://doi.org/10.1007/s11270-017-3516-0

    Article  CAS  Google Scholar 

  • Luo, J., Chen, W., Song, H., & Liu, J. (2020). Fabrication of hierarchical layer-by-layer membrane as the photocatalytic degradation of foulants and effective mitigation of membrane fouling for wastewater treatment. Science of the Total Environment, 699, 134398. https://doi.org/10.1016/j.scitotenv.2019.134398

    Article  CAS  Google Scholar 

  • Lv, S. W., Liu, J. M., Li, C. Y., Zhao, N., Wang, Z. H., & Wang, S. (2020). Two novel MOFs@COFs hybrid-based photocatalytic platforms coupling with sulfate radical-involved advanced oxidation processes for enhanced degradation of bisphenol A. Chemosphere, 243(94), 125378. https://doi.org/10.1016/j.chemosphere.2019.125378

    Article  CAS  Google Scholar 

  • Lyu, H., Gao, B., He, F., Ding, C., Tang, J., & Crittenden, J. C. (2017). Ball-milled carbon nanomaterials for energy and environmental applications. ACS Sustainable Chemistry and Engineering, 5(11), 9568–9585. https://doi.org/10.1021/acssuschemeng.7b02170

    Article  CAS  Google Scholar 

  • Ma, Y., Qi, Y., Lu, T., Yang, L., Wu, L., Cui, S., Ding, Y., & Zhang, Z. (2021). Highly efficient removal of imidacloprid using potassium hydroxide activated magnetic microporous loofah sponge biochar. Science of the Total Environment, 765, 144253. https://doi.org/10.1016/j.scitotenv.2020.144253

    Article  CAS  Google Scholar 

  • Macellaro, G., Pezzella, C., Cicatiello, P., Sannia, G., & Piscitelli, A. (2014). Fungal laccases degradation of endocrine disrupting compounds. BioMed Research International, 2014, 614038. https://doi.org/10.1155/2014/614038

  • Mahmoudian, M. H., Mesdaghinia, A., Mahvi, A. H., Nasseri, S., Nabizadeh, R., & Dehghani, M. H. (2022). Photocatalytic degradation of bisphenol a from aqueous solution using bismuth ferric magnetic nanoparticle: Synthesis, characterization and response surface methodology-central composite design modeling. Journal of Environmental Health Science and Engineering, 20(2), 617–628. https://doi.org/10.1007/s40201-021-00762-2

    Article  CAS  Google Scholar 

  • Marimuthu, S., Antonisamy, A. J., Malayandi, S., Rajendran, K., Tsai, P. C., Pugazhendhi, A., & Ponnusamy, V. K. (2020). Silver nanoparticles in dye effluent treatment: A review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. Journal of Photochemistry and Photobiology B: Biology, 205, 111823. https://doi.org/10.1016/j.jphotobiol.2020.111823

  • Maroušek, J., Stehel, V., Vochozka, M., Kolář, L., Maroušková, A., Strunecký, O., Peterka, J., Kopecký, M., & Shreedhar, S. (2019). Ferrous sludge from water clarification: Changes in waste management practices advisable. Journal of Cleaner Production, 218, 459–464. https://doi.org/10.1016/j.jclepro.2019.02.037

    Article  CAS  Google Scholar 

  • Mileva, G., Baker, S. L., Konkle, A. T. M., & Bielajew, C. (2014). Bisphenol-A: Epigenetic reprogramming and effects on reproduction and behavior. International Journal of Environmental Research and Public Health, 11(7), 7537–7561. https://doi.org/10.3390/ijerph110707537

    Article  CAS  Google Scholar 

  • Mohammadi, R., Hezarjaribi, M., Ramasamy, D. L., Sillanpää, M., & Pihlajamäki, A. (2021). Application of a novel biochar adsorbent and membrane to the selective separation of phosphate from phosphate-rich wastewaters. Chemical Engineering Journal, 407(June 2020), 126494. https://doi.org/10.1016/j.cej.2020.126494

    Article  CAS  Google Scholar 

  • Mohan, D., Kumar, H., Sarswat, A., Alexandre-Franco, M., & Pittman, C. U. (2014). Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chemical Engineering Journal, 236, 513–528. https://doi.org/10.1016/j.cej.2013.09.057

    Article  CAS  Google Scholar 

  • Mohubedu, R. P., Diagboya, P. N. E., Abasi, C. Y., Dikio, E. D., & Mtunzi, F. (2019). Magnetic valorization of biomass and biochar of a typical plant nuisance for toxic metals contaminated water treatment. Journal of Cleaner Production, 209, 1016–1024. https://doi.org/10.1016/j.jclepro.2018.10.215

  • Nath, A., Biswas, S., & Pal, A. (2022). A comprehensive review on BPA degradation by heterogeneous Fenton-like processes. Water Science and Technology, 86(4), 714–745. https://doi.org/10.2166/wst.2022.219

    Article  CAS  Google Scholar 

  • Nguyen, V. T., Nguyen, T. B., Huang, C. P., Chen, C. W., Bui, X. T., & Dong, C. D. (2021). Alkaline modified biochar derived from spent coffee ground for removal of tetracycline from aqueous solutions. Journal of Water Process Engineering, 40(August 2020), 101908. https://doi.org/10.1016/j.jwpe.2020.101908

    Article  Google Scholar 

  • Niu, Z., Feng, W., Huang, H., Wang, B., Chen, L., Miao, Y., & Su, S. (2020). Green synthesis of a novel Mn–Zn ferrite/biochar composite from waste batteries and pine sawdust for Pb2+ removal. Chemosphere, 252, 126529.

    Article  CAS  Google Scholar 

  • Ohore, O. E., & Songhe, Z. (2019). Endocrine disrupting effects of bisphenol A exposure and recent advances on its removal by water treatment systems. A review. Scientific African, 5. https://doi.org/10.1016/j.sciaf.2019.e00135

  • Okoya, A. A., Adegbaju, O. S., Akinola, O. E., Akinyele, A. B., & Amuda, O. S. (2020). Comparative assessment of the efficiency of rice husk biochar and conventional water treatment method to remove chlorpyrifos from pesticide polluted water. Current Journal of Applied Science and Technology, 39, 1–11. https://doi.org/10.9734/cjast/2020/v39i230491

  • Oladipo, A. A., & Ifebajo, A. O. (2018). Highly efficient magnetic chicken bone biochar for removal of tetracycline and fluorescent dye from wastewater: Two-stage adsorber analysis. Journal of Environmental Management, 209, 9–16. https://doi.org/10.1016/j.jenvman.2017.12.030

  • Paunovic, O., Pap, S., Maletic, S., Taggart, M. A., Boskovic, N., & Turk Sekulic, M. (2019). Ionisable emerging pharmaceutical adsorption onto microwave functionalised biochar derived from novel lignocellulosic waste biomass. Journal of Colloid and Interface Science, 547, 350–360. https://doi.org/10.1016/j.jcis.2019.04.011

    Article  CAS  Google Scholar 

  • Qiao, K., Tian, W., Bai, J., Wang, L., Zhao, J., Song, T., & Chu, M. (2020). Removal of high-molecular-weight polycyclic aromatic hydrocarbons by a microbial consortium immobilized in magnetic floating biochar gel beads. Marine Pollution Bulletin, 159(April), 111489. https://doi.org/10.1016/j.marpolbul.2020.111489

    Article  CAS  Google Scholar 

  • Qiu, B., Tao, X., Wang, H., Li, W., Ding, X., & Chu, H. (2021). Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review. Journal of Analytical and Applied Pyrolysis, 155(December 2020), 105081. https://doi.org/10.1016/j.jaap.2021.105081

    Article  CAS  Google Scholar 

  • Qu, J., Akindolie, M. S., Feng, Y., Jiang, Z., Zhang, G., Jiang, Q., Deng, F., Cao, B., & Zhang, Y. (2020). One-pot hydrothermal synthesis of NaLa(CO3)2 decorated magnetic biochar for efficient phosphate removal from water: Kinetics, isotherms, thermodynamics, mechanisms and reusability exploration. Chemical Engineering Journal, 394, 124915. https://doi.org/10.1016/j.cej.2020.124915

  • Qu, J., Shi, J., Wang, Y., Tong, H., Zhu, Y., Xu, L., Wang, Y., Zhang, B., Tao, Y., Dai, X., Zhang, H., & Zhang, Y. (2022a). Applications of functionalized magnetic biochar in environmental remediation: A review. Journal of Hazardous Materials, 434(April), 128841. https://doi.org/10.1016/j.jhazmat.2022.128841

    Article  CAS  Google Scholar 

  • Qu, J., Wei, S., Liu, Y., Zhang, X., Jiang, Z., Tao, Y., Zhang, G., Zhang, B., Wang, L., & Zhang, Y. (2022). Effective lead passivation in soil by bone char/CMC-stabilized FeS composite loading with phosphate-solubilizing bacteria. Journal of Hazardous Materials, 423(PA), 127043. https://doi.org/10.1016/j.jhazmat.2021.127043

    Article  CAS  Google Scholar 

  • Rajendrachari, S., Taslimi, P., Karaoglanli, A. C., Uzun, O., Alp, E., & Jayaprakash, G. K. (2021). Photocatalytic degradation of Rhodamine B (RhB) dye in waste water and enzymatic inhibition study using cauliflower shaped ZnO nanoparticles synthesized by a novel One-pot green synthesis method. Arabian Journal of Chemistry, 14(6), 103180. https://doi.org/10.1016/j.arabjc.2021.103180

    Article  CAS  Google Scholar 

  • Rizwan, M., Lin, Q., Chen, X., Li, Y., Li, G., Zhao, X., & Tian, Y. (2020). Synthesis, characterization and application of magnetic and acid modified biochars following alkaline pretreatment of rice and cotton straws. Science of the Total Environment, 714(2), 136532. https://doi.org/10.1016/j.scitotenv.2020.136532

    Article  CAS  Google Scholar 

  • Reis, A. R., & Sakakibara, Y. (2012). Enzymatic degradation of endocrine-disrupting chemicals in aquatic plants and relations to biological Fenton reaction. Water Science and Technology, 66, 775–782. https://doi.org/10.2166/wst.2012.241

  • Rodriguez-Narvaez, O. M., Peralta-Hernandez, J. M., Goonetilleke, A., & Bandala, E. R. (2017). Treatment technologies for emerging contaminants in water: A review. Chemical Engineering Journal, 323(2017), 361380. https://doi.org/10.1016/j.cej.2017.04.106

    Article  CAS  Google Scholar 

  • Rong, X., Xie, M., Kong, L., Natarajan, V., Ma, L., & Zhan, J. (2019a). The magnetic biochar derived from banana peels as a persulfate activator for organic contaminants degradation. Chemical Engineering Journal, 372(2018), 294–303. https://doi.org/10.1016/j.cej.2019.04.135

    Article  CAS  Google Scholar 

  • Rong, X., Xie, M., Kong, L., Natarajan, V., Ma, L., & Zhan, J. (2019). The magnetic biochar derived from banana peels as a persulfate activator for organic contaminants degradation. Chemical Engineering Journal, 372(December 2018), 294–303. https://doi.org/10.1016/j.cej.2019.04.135

    Article  CAS  Google Scholar 

  • Rout, P. R., Zhang, T. C., Bhunia, P., & Surampalli, R. Y. (2021). Treatment technologies for emerging contaminants in wastewater treatment plants: A review. Science of the Total Environment, 753, 141990. https://doi.org/10.1016/j.scitotenv.2020.141990

    Article  CAS  Google Scholar 

  • Santhosh, C., Daneshvar, E., Tripathi, K. M., Baltrėnas, P., Kim, T. Y., Baltrėnaitė, E., & Bhatnagar, A. (2020). Synthesis and characterization of magnetic biochar adsorbents for the removal of Cr(VI) and Acid orange 7 dye from aqueous solution. Environmental Science and Pollution Research, 27(26), 32874–32887. https://doi.org/10.1007/s11356-020-09275-1

    Article  CAS  Google Scholar 

  • Sarkar, S., Ponce, N. T., Banerjee, A., Bandopadhyay, R., Rajendran, S., & Lichtfouse, E. (2020). Green polymeric nanomaterials for the photocatalytic degradation of dyes: A review. Environmental Chemistry Letters, 18, 1569–1580. https://doi.org/10.1007/s10311-020-01021-w

  • Sathya, U., Keerthi, N. M., & Balasubramanian, N. (2019). Evaluation of advanced oxidation processes (AOPs) integrated membrane bioreactor (MBR) for the real textile wastewater treatment. Journal of Environmental Management, 246, 768–775. https://doi.org/10.1016/j.jenvman.2019.06.039

  • Scaria, J., Gopinath, A., Ranjith, N., Ravindran, V., Ummar, S., Nidheesh, P. V., & Kumar, M. S. (2022). Carbonaceous materials as effective adsorbents and catalysts for the removal of emerging contaminants from water. Journal of Cleaner Production, 350(November 2021), 131319. https://doi.org/10.1016/j.jclepro.2022.131319

    Article  CAS  Google Scholar 

  • Shan, D., Deng, S., Zhao, T., Wang, B., Wang, Y., Huang, J., Yu, G., Winglee, J., & Wiesner, M. R. (2016). Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. Journal of Hazardous Materials, 305, 156–163. https://doi.org/10.1016/j.jhazmat.2015.11.047

    Article  CAS  Google Scholar 

  • Shang, J., Pi, J., Zong, M., Wang, Y., Li, W., & Liao, Q. (2016). Chromium removal using magnetic biochar derived from herb-residue. Journal of the Taiwan Institute of Chemical Engineers, 68, 289–294. https://doi.org/10.1016/j.jtice.2016.09.012

    Article  CAS  Google Scholar 

  • Sharma, P. R., Sharma, S. K., Antoine, R., & Hsiao, B. S. (2019). Efficient removal of arsenic using zinc oxide nanocrystal-decorated regenerated microfibrillated cellulose scaffolds. ACS Sustainable Chemistry & Engineering, 7, 6140–6151. https://doi.org/10.1021/acssuschemeng.8b06356

  • Silva, L. L. S., Moreira, C. G., Curzio, B. A., & da Fonseca, F. V. (2017). Micropollutant removal from water by membrane and advanced oxidation processes—A review. Journal of Water Resource and Protection, 09, 411–431. https://doi.org/10.4236/jwarp.2017.95027

  • Smith, K., & Liu, S. (2017). Energy for conventional water supply and wastewater treatment in urban China: A review. Global Challenges, 1, 1600016. https://doi.org/10.1002/gch2.201600016

  • Song, X., Mcdonald, J., Price, W. E., Khan, S. J., Hai, F. I., Ngo, H. H., Guo, W., & Nghiem, L. D. (2016). Bioresource technology effects of salinity build-up on the performance of an anaerobic membrane bioreactor regarding basic water quality parameters and removal of trace organic contaminants. Bioresource Technology, 216, 399–405. https://doi.org/10.1016/j.biortech.2016.05.075

  • Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 70–85. https://doi.org/10.1016/j.chemosphere.2014.12.058

    Article  CAS  Google Scholar 

  • Tang, W., Zanli, B. L. G. L., & Chen, J. (2021). O/N/P-doped biochar induced to enhance adsorption of sulfonamide with coexisting Cu2+/ Cr (VI) by air pre-oxidation. Bioresource Technology, 341(July), 125794. https://doi.org/10.1016/j.biortech.2021.125794

    Article  CAS  Google Scholar 

  • Thines, K. R., Abdullah, E. C., Mubarak, N. M., & Ruthiraan, M. (2017). Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: A review. Renewable and Sustainable Energy Reviews, 67, 257–276. https://doi.org/10.1016/j.rser.2016.09.057

    Article  CAS  Google Scholar 

  • Tian, R., Dong, H., Chen, J., Li, R., Xie, Q., Li, L., Li, Y., Jin, Z., Xiao, S., & Xiao, J. (2021). Electrochemical behaviors of biochar materials during pollutant removal in wastewater: A review. Chemical Engineering Journal, 425(May), 130585. https://doi.org/10.1016/j.cej.2021.130585

    Article  CAS  Google Scholar 

  • Tijani, J. O., Fatoba, O. O., & Petrik, L. F. (2013). A review of pharmaceuticals and endocrine-disrupting compounds : Sources, effects, removal, and detections. Water Air Soil Pollution, 224(2013), 1770. https://doi.org/10.1007/s11270-013-1770-3

    Article  CAS  Google Scholar 

  • Verliefde, A. R. D., Cornelissen, E. R., Heijman, S. G. J., Verberk, J. Q. J. C., Amy, G. L., van der Bruggen, B., & Van Dijk, J. C. (2008). The role of electrostatic interactions on the rejection of organic solutes in aqueous solutions with nanofiltration. Journal of Membrane Science, 322(2008), 52–66. https://doi.org/10.1016/j.memsci.2008.05.022

    Article  CAS  Google Scholar 

  • Wang, J., & Zhang, M. (2020). Adsorption characteristics and mechanism of bisphenol a by magnetic biochar. International Journal of Environmental Research and Public Health, 17(3), 1075. https://doi.org/10.3390/ijerph17031075

    Article  CAS  Google Scholar 

  • Wang, S., Gao, B., Zimmerman, A. R., Li, Y., Ma, L., Harris, W. G., & Migliaccio, K. W. (2015). Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresource Technology, 175, 391–395. https://doi.org/10.1016/j.biortech.2014.10.104

    Article  CAS  Google Scholar 

  • Wang, L., Wang, J., He, C., Lyu, W., Zhang, W., Yan, W., & Yang, L. (2019a). Development of rare earth element doped magnetic biochars with enhanced phosphate adsorption performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 561(October 2018), 236–243. https://doi.org/10.1016/j.colsurfa.2018.10.082

    Article  CAS  Google Scholar 

  • Wang, Q., Yang, H., Yang, M., Yu, Y., Yan, M., Zhou, L., Liu, X., Xiao, S., Yang, Y., Wang, Y., Zheng, L., Zhao, H. H., & Li, Y. (2019b). Toxic effects of bisphenol A on goldfish gonad development and the possible pathway of BPA disturbance in female and male fish reproduction. Chemosphere, 221, 235–245. https://doi.org/10.1016/j.chemosphere.2019.01.033

    Article  CAS  Google Scholar 

  • Wang, H., Lou, X., Hu, Q., & Sun, T. (2021). Adsorption of antibiotics from water by using Chinese herbal medicine residues derived biochar: Preparation and properties studies. Journal of Molecular Liquids, 325, 2–10. https://doi.org/10.1016/j.molliq.2020.114967

    Article  CAS  Google Scholar 

  • Xiang, Y., Xu, Z., Wei, Y., Zhou, Y., Yang, X., Yang, Y., Yang, J., Zhang, J., Luo, L., & Zhou, Z. (2019a). Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors. Journal of Environmental Management, 237(February), 128–138. https://doi.org/10.1016/j.jenvman.2019.02.068

    Article  CAS  Google Scholar 

  • Xiang, Y., Xu, Z., Zhou, Y., Wei, Y., Long, X., He, Y., Zhi, D., Yang, J., & Luo, L. (2019b). A sustainable ferromanganese biochar adsorbent for effective levofloxacin removal from aqueous medium. Chemosphere, 237, 124464. https://doi.org/10.1016/j.chemosphere.2019.124464

    Article  CAS  Google Scholar 

  • Xiang, Y., Yang, X., Xu, Z., Hu, W., Zhou, Y., Wan, Z., Yang, Y., Wei, Y., Yang, J., & Tsang, D. C. W. (2020). Fabrication of sustainable manganese ferrite modified biochar from vinasse for enhanced adsorption of fluoroquinolone antibiotics: Effects and mechanisms. Science of the Total Environment, 709, 136079. https://doi.org/10.1016/j.scitotenv.2019.136079

    Article  CAS  Google Scholar 

  • Xiao, J., Hu, R., & Chen, G. (2020). Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II). Journal of Hazardous Materials, 387(December 2019), 121980. https://doi.org/10.1016/j.jhazmat.2019.121980

    Article  CAS  Google Scholar 

  • Xie, H., Yao, X., Yu, X., Mao, L., Zeng, Y., Wu, F., Guo, S., & He, G. (2023). Flotation performance and adsorption mechanism of cerussite with phenylpropenyl hydroxamic acid collector. Minerals, 13(10), 1–11. https://doi.org/10.3390/min13101315

    Article  CAS  Google Scholar 

  • Xiong, S., Gong, D., Deng, Y., Tang, R., Li, L., Zhou, Z., Zheng, J., Yang, L., & Su, L. (2021). Facile one-pot magnetic modification of Enteromorpha prolifera derived biochar: Increased pore accessibility and Fe-loading enhances the removal of butachlor. Bioresource Technology, 337(June), 125407. https://doi.org/10.1016/j.biortech.2021.125407

    Article  CAS  Google Scholar 

  • Xu, D., Cao, J., Li, Y., Howard, A., & Yu, K. (2019). Effect of pyrolysis temperature on characteristics of biochars derived from different feedstocks: A case study on ammonium adsorption capacity. Waste Management, 87, 652–660. https://doi.org/10.1016/j.wasman.2019.02.049

    Article  CAS  Google Scholar 

  • Xu, S., Li, J., Yin, Z., Liu, S., Bian, S., & Zhang, Y. (2020). A highly efficient strategy for enhancing the adsorptive and magnetic capabilities of biochar using Fenton oxidation. Bioresource Technology, 315(May), 123797. https://doi.org/10.1016/j.biortech.2020.123797

    Article  CAS  Google Scholar 

  • Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A. R., & Ro, K. S. (2012). Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chemical Engineering Journal, 200–202, 673–680. https://doi.org/10.1016/j.cej.2012.06.116

    Article  CAS  Google Scholar 

  • Yan, N., Hu, B., Zheng, Z., Lu, H., Chen, J., Zhang, X., Jiang, X., Wu, Y., Dolfing, J., & Xu, L. (2023). Twice-milled magnetic biochar: A recyclable material for efficient removal of methylene blue from wastewater. Bioresource Technology, 128663.

  • Yao, X., Ji, L., Guo, J., Ge, S., Lu, W., Cai, L., Wang, Y., Song, W., & Zhang, H. (2020). Magnetic activated biochar nanocomposites derived from wakame and its application in methylene blue adsorption. Bioresource Technology, 302, 122842.

    Article  CAS  Google Scholar 

  • Yao, X., Yu, X., Wang, L., Zeng, Y., Mao, L., Liu, S., Xie, H., He, G., Huang, Z., & Liu, Z. (2023). Preparation of cinnamic hydroxamic acid collector and study on flotation characteristics and mechanism of scheelite. International Journal of Mining Science and Technology, 33(6), 773–781. https://doi.org/10.1016/j.ijmst.2022.11.009

    Article  CAS  Google Scholar 

  • Yi, Y., Huang, Z., Lu, B., Xian, J., Tsang, E. P., Cheng, W., Fang, J., & Fang, Z. (2019). Magnetic biochar for environmental remediation: A review. Bioresource Technology, 298(September 2019), 122468. https://doi.org/10.1016/j.biortech.2019.122468

    Article  CAS  Google Scholar 

  • Yi, Y., Huang, Z., Lu, B., Xian, J., Tsang, E. P., Cheng, W., Fang, J., & Fang, Z. (2019). Magnetic biochar for environmental remediation: A review. Bioresource Technology, 298(September 2019), 122468. https://doi.org/10.1016/j.biortech.2019.122468

    Article  CAS  Google Scholar 

  • Yi, Y., Tu, G., Zhao, D., Tsang, P. E., & Fang, Z. (2019). Biomass waste components significantly influence the removal of Cr(VI) using magnetic biochar derived from four types of feedstocks and steel pickling waste liquor. Chemical Engineering Journal, 360(November 2018), 212–220. https://doi.org/10.1016/j.cej.2018.11.205

    Article  CAS  Google Scholar 

  • Yi, Y., Tu, G., Zhao, D., Tsang, P. E., & Fang, Z. (2020). Key role of FeO in the reduction of Cr(VI) by magnetic biochar synthesised using steel pickling waste liquor and sugarcane bagasse. Journal of Cleaner Production, 245(Vi), 118886. https://doi.org/10.1016/j.jclepro.2019.118886

    Article  CAS  Google Scholar 

  • Yin, Y., Yang, S., Jia, Z., Zhang, H., Gao, Y., Zhang, X., Zhong, H., Zhou, Z., Zhang, X., & Zhou, H. (2022). Magnetic biochar based on furfural residue as an excellent candidate for efficient adsorption of tetracycline, bisphenol a, Congo red, and Cr6+. Environmental Science and Pollution Research, 26510–26522. https://doi.org/10.1007/s11356-022-23978-7

  • Yu, J. X., Wang, L. Y., Chi, R. A., Zhang, Y. F., Xu, Z. G., & Guo, J. (2013). Competitive adsorption of Pb 2+ and Cd 2+ on magnetic modified sugarcane bagasse prepared by two simple steps. Applied Surface Science, 268, 163–170. https://doi.org/10.1016/j.apsusc.2012.12.047

    Article  CAS  Google Scholar 

  • Yu, Y., Guo, H., Zhong, Z., Wang, A., Xiang, M., Xu, S., Dong, C., & Chang, Z. (2022). Fe3O4 loaded on ball milling biochar enhanced bisphenol a removal by activating persulfate: Performance and activating mechanism. Journal of Environmental Management, 319(July), 115661. https://doi.org/10.1016/j.jenvman.2022.115661

    Article  CAS  Google Scholar 

  • Yu, X., Mao, L., Xie, H., Yao, X., He, G.,... Huang, Z. (2023). Flotation behavior and adsorption mechanism of phenylpropyl hydroxamic acid as collector agent in separation of fluorite from calcite. Langmuir, 39(16). https://doi.org/10.1021/acs.langmuir.3c00584

  • Yüksel, S., Kabay, N., & Yüksel, M. (2013). Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2013.05.020

    Article  Google Scholar 

  • Zacharakis, A., Chatzisymeon, E., Binas, V., Frontistis, Z., Venieri, D., & Mantzavinos, D. (2013). Solar photocatalytic degradation of bisphenol A on immobilized ZnO or TiO2. International Journal of Photoenergy, 2013, 1–10. https://doi.org/10.1155/2013/570587

    Article  CAS  Google Scholar 

  • Zahedifar, M., Seyedi, N., Shafiei, S., & Basij, M. (2021). Surface-modified magnetic biochar: Highly efficient adsorbents for removal of Pb(ΙΙ) and Cd(ΙΙ). Materials Chemistry and Physics, 271(May), 124860. https://doi.org/10.1016/j.matchemphys.2021.124860

    Article  CAS  Google Scholar 

  • Zamora-ledezma, C., Negrete-bolagay, D., Figueroa, F., Zamora-ledezma, E., Ni, M., Alexis, F., & Guerrero, V. H. (2021). Environmental technology & innovation heavy metal water pollution : A fresh look about hazards, novel and conventional remediation methods. Environmental Technology & Innovation, 22, 101504. https://doi.org/10.1016/j.eti.2021.101504

    Article  CAS  Google Scholar 

  • Zhai, Y., Dai, Y., Guo, J., Zhou, L., Chen, M., Yang, H., & Peng, L. (2020). Novel biochar@CoFe2O4/Ag3PO4 photocatalysts for highly efficient degradation of bisphenol a under visible-light irradiation. Journal of Colloid and Interface Science, 560, 111–121. https://doi.org/10.1016/j.jcis.2019.08.065

    Article  CAS  Google Scholar 

  • Zhang, C., Liu, L., Zhao, M., Rong, H., & Xu, Y. (2018a). The environmental characteristics and applications of biochar. Environmental Science and Pollution Research, 25(22), 21525–21534. https://doi.org/10.1007/s11356-018-2521-1

    Article  CAS  Google Scholar 

  • Zhang, H., Xue, G., Chen, H., & Li, X. (2018b). Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment. Chemosphere, 191, 64–71. https://doi.org/10.1016/j.chemosphere.2017.10.026

    Article  CAS  Google Scholar 

  • Zhang, L., Guo, J., Huang, X., Wang, W., Sun, P., Li, Y., & Han, J. (2019). Functionalized biochar-supported magnetic MnFe 2 O 4 nanocomposite for the removal of Pb(ii) and Cd(ii). RSC Advances, 9(1), 365–376. https://doi.org/10.1039/c8ra09061k

    Article  CAS  Google Scholar 

  • Zhang, G., Zhao, Z., & Zhu, Y. (2020a). Changes in abiotic dissipation rates and bound fractions of antibiotics in biochar-amended soil. Journal of Cleaner Production, 256, 120314. https://doi.org/10.1016/j.jclepro.2020.120314

    Article  CAS  Google Scholar 

  • Zhang, Y., Piao, M., He, L., Yao, L., Piao, T., Liu, Z., & Piao, Y. (2020b). Immobilization of laccase on magnetically separable biochar for highly efficient removal of bisphenol A in water. RSC Advances, 10(8), 4795–4804. https://doi.org/10.1039/c9ra08800h

    Article  CAS  Google Scholar 

  • Zhang, Y., Akindolie, M. S., Tian, X., Wu, B., Hu, Q., Jiang, Z., Wang, L., Tao, Y., Cao, B., & Qu, J. (2021). Enhanced phosphate scavenging with effective recovery by magnetic porous biochar supported La(OH)3: Kinetics, isotherms, mechanisms and applications for water and real wastewater. Bioresource Technology, 319(August 2020), 124232. https://doi.org/10.1016/j.biortech.2020.124232

    Article  CAS  Google Scholar 

  • Zhang, Y., Huang, Z., Fang, X., Chen, Y., Fan, S., & Xu, H. (2022). Preparation of magnetic porous biochar through hydrothermal pretreatment combined with K2FeO4 activation to improve tetracycline removal. Microporous and Mesoporous Materials, 343(August), 112188. https://doi.org/10.1016/j.micromeso.2022.112188

    Article  CAS  Google Scholar 

  • Zhang, X., Shu, X., Zhou, X., Zhou, C., Yang, P., Diao, M., Hu, H., Gan, X., Zhao, C., & Fan, C. (2023). Magnetic reed biochar materials as adsorbents for aqueous copper and phenol removal. Environmental Science and Pollution Research, 30(2), 3659–3667. https://doi.org/10.1007/s11356-022-22474-2

    Article  CAS  Google Scholar 

  • Zhao, N., Zhao, C., Lv, Y., Zhang, W., Du, Y., Hao, Z., & Zhang, J. (2017). Adsorption and coadsorption mechanisms of Cr(VI) and organic contaminants on H3PO4 treated biochar. Chemosphere, 186(Vi), 422–429. https://doi.org/10.1016/j.chemosphere.2017.08.016

    Article  CAS  Google Scholar 

  • Zhao, Y., Zhang, R., Liu, H., Li, M., Chen, T., Chen, D., Zou, X., & Frost, R. L. (2019). Green preparation of magnetic biochar for the effective accumulation of Pb(II): Performance and mechanism. Chemical Engineering Journal, 375(2019), 122011. https://doi.org/10.1016/j.cej.2019.122011

    Article  CAS  Google Scholar 

  • Zhao, M., Dai, Y., Zhang, M., Feng, C., Qin, B., Zhang, W., Zhao, N., Li, Y., Ni, Z., Xu, Z., Tsang, D. C. W., & Qiu, R. (2020). Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies. Science of the Total Environment, 717, 136894. https://doi.org/10.1016/j.scitotenv.2020.136894

    Article  CAS  Google Scholar 

  • Zhen, J., Zhang, S., Zhuang, X., Ahmad, S., Lee, T., Si, H., Cao, C., & Ni, S. Q. (2021). Sulfate radicals based heterogeneous peroxymonosulfate system catalyzed by CuO-Fe3O4-Biochar nanocomposite for bisphenol A degradation. Journal of Water Process Engineering, 41(February), 102078. https://doi.org/10.1016/j.jwpe.2021.102078

    Article  Google Scholar 

  • Zheng, X., He, X., Peng, H., Wen, J., & Lv, S. (2021). Efficient adsorption of ciprofloxacin using Ga2S3/S-modified biochar via the high-temperature sulfurization. Bioresource Technology, 334(April), 125238. https://doi.org/10.1016/j.biortech.2021.125238

    Article  CAS  Google Scholar 

  • Zhou, N., Chen, H., Xi, J., Yao, D., Zhou, Z., Tian, Y., & Lu, X. (2017). Biochars with excellent Pb(II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization. Bioresource Technology, 232(Ii), 204–210. https://doi.org/10.1016/j.biortech.2017.01.074

    Article  CAS  Google Scholar 

  • Zhou, L., Richard, C., Ferronato, C., Chovelon, J. M., & Sleiman, M. (2018a). Investigating the performance of biomass-derived biochars for the removal of gaseous ozone, adsorbed nitrate and aqueous bisphenol A. Chemical Engineering Journal, 334(November 2017), 2098–2104. https://doi.org/10.1016/j.cej.2017.11.145

    Article  CAS  Google Scholar 

  • Zhou, X., Zhou, J., Liu, Y., Guo, J., Ren, J., & Zhou, F. (2018b). Preparation of iminodiacetic acid-modified magnetic biochar by carbonization, magnetization and functional modification for Cd(II) removal in water. Fuel, 233(June), 469–479. https://doi.org/10.1016/j.fuel.2018.06.075

    Article  CAS  Google Scholar 

  • Zhou, J., Liu, Y., Han, Y., Jing, F., & Chen, J. (2019a). Bone-derived biochar and magnetic biochar for effective removal of fluoride in groundwater: Effects of synthesis method and coexisting chromium. Water Environment Research, 91(7), 588–597. https://doi.org/10.1002/wer.1068

    Article  CAS  Google Scholar 

  • Zhou, Y., He, Y., He, Y., Liu, X., Xu, B., Yu, J., Dai, C., Huang, A., Pang, Y., & Luo, L. (2019b). Analyses of tetracycline adsorption on alkali-acid modified magnetic biochar: Site energy distribution consideration. Science of the Total Environment, 650, 2260–2266. https://doi.org/10.1016/j.scitotenv.2018.09.393

    Article  CAS  Google Scholar 

  • Zhou, C., Zhou, H., Yuan, Y., Peng, J., Yao, G., Zhou, P., & Lai, B. (2021). Coupling adsorption and in-situ Fenton-like oxidation by waste leather-derived materials in continuous flow mode towards sustainable removal of trace antibiotics. Chemical Engineering Journal, 420(P3), 130370. https://doi.org/10.1016/j.cej.2021.130370

    Article  CAS  Google Scholar 

  • Zhu, H., & Li, W. (2013). Bisphenol A removal from synthetic municipal wastewater by a bioreactor coupled with either a forward osmotic membrane or a microfiltration membrane unit. Frontiers of Environmental Science and Engineering, 7(2), 294–300. https://doi.org/10.1007/s11783-013-0486-3

    Article  CAS  Google Scholar 

  • Zhu, Y., Zheng, C., Wu, S., Song, Y., & Hu, B. (2018). Interaction of Eu(III) on magnetic biochar investigated by batch, spectroscopic and modeling techniques. Journal of Radioanalytical and Nuclear Chemistry, 316(3), 1337–1346. https://doi.org/10.1007/s10967-018-5839-8

    Article  CAS  Google Scholar 

  • Zhuang, Z., Wang, L., & Tang, J. (2021). Efficient removal of volatile organic compound by ball-milled biochars from different preparing conditions. Journal of Hazardous Materials, 406, 124676. https://doi.org/10.1016/j.jhazmat.2020.124676

    Article  CAS  Google Scholar 

  • Zielińska, M., Bułkowska, K., Cydzik-Kwiatkowska, A., Bernat, K., & Wojnowska-Baryła, I. (2016). Removal of bisphenol A (BPA) from biologically treated wastewater by microfiltration and nanofiltration. International Journal of Environmental Science and Technology, 13(9), 2239–2248. https://doi.org/10.1007/s13762-016-1056-6

    Article  CAS  Google Scholar 

  • Zoroufchi Benis, K., Motalebi Damuchali, A., Soltan, J., & McPhedran, K. N. (2020). Treatment of aqueous arsenic – A review of biochar modification methods. Science of the Total Environment, 739, 139750. https://doi.org/10.1016/j.scitotenv.2020.139750

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Institute of Nanoscience and Nanotechnology (ION2) and the Department of Physics, Faculty of Science, Universiti Putra Malaysia, and the Department of Agricultural and Biological Engineering, Kwara State University, Malete, via Tertiary Education Trust Fund (TETF/UNIV/KWASU/ASTD/2019).

Funding

This work was funded by the Ministry of Higher Education (MOHE), under FRGS with Grant Number (FRGS/1/2023/STG07/UPM/02/8) and FRGS/1/2019/TK10/UPM/02.

Author information

Authors and Affiliations

Authors

Contributions

Kamil Kayode Katibi and Khairul Faezah Yunos: conceptualization, methodology, software, ‎writing—original draft preparation. Rabaah Syahidah Azis, Abba Mohammed Umar and ‎Kehinde Raheef Adebayo: visualization, validation. Kamil Kayode Katibi, Khairul Faezah ‎Yunos, and Ibrahim Garba Shitu: writing—reviewing and editing. Raphael Terungwa Iwar and ‎Adamu Suleiman Bashir: supervision, funding acquisition.‎

Corresponding authors

Correspondence to Kamil Kayode Katibi or Rabaah Syahidah Azis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katibi, K.K., Shitu, I.G., Yunos, K.F.M. et al. Unlocking the potential of magnetic biochar in wastewater purification: a review on the removal of bisphenol A from aqueous solution. Environ Monit Assess 196, 492 (2024). https://doi.org/10.1007/s10661-024-12574-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12574-6

Keywords

Navigation