Skip to main content
Log in

Interaction of Eu(III) on magnetic biochar investigated by batch, spectroscopic and modeling techniques

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Interaction mechanism of Eu(III) on magnetic biochar(MB) was investigated by batch, XPS, EXAFS and modeling techniques. Maximum Eu(III) adsorption capacity on MB is 105.53 mg/g at pH 3.0, which was demonstrated to various functional groups by XPS analysis. No effect of ionic strength revealed inner-sphere surface complexation. According to EXAFS analysis, inner-sphere surface complexation and surface co-precipitation dominated the Eu(III) adsorption at low and high pH, respectively. Eu(III) adsorption can be simulated by surface complexation modeling. These results indicated that MB can be used a promising candidate for the highly effective adsorbent of radionuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chang HS, Buettner SW, Seaman JC, Jaffe PR, van Groos PG, Li D, Peacock AD, Scheckel KG, Kaplan DI (2014) Uranium immobilization in an iron-rich rhizosphere of a native wetland plant from the Savannah River Site under reducing conditions. Environ Sci Technol 48:9270–9278

    Article  CAS  PubMed  Google Scholar 

  2. Sun YB, Yang SB, Chen Y, Ding CC, Cheng WC, Wang XK (2015) Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study. Environ Sci Technol 49:4255–4262

    Article  CAS  PubMed  Google Scholar 

  3. Rabung T, Pierret MC, Bauer A, Geckeis H, Bradbury MH, Baeyens B (2005) Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 1: batch sorption and time-resolved laser fluorescence spectroscopy experiments. Geochim Cosmochim Acta 69:5393–5402

    Article  CAS  Google Scholar 

  4. Wang XX, Sun YB, Alsaedi A, Hayat T, Wang XK (2015) Interaction mechanism of Eu(III) with MX-80 bentonite studied by batch, TRLFS and kinetic desorption techniques. Chem Eng J 264:570–576

    Article  CAS  Google Scholar 

  5. Sun YB, Li JX, Wang XK (2014) The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques. Geochim Cosmochim Acta 140:621–643

    Article  CAS  Google Scholar 

  6. Schnurr A, Marsac R, Rabung T, Lutzenkirchen J, Geckeis H (2015) Sorption of Cm(III) and Eu(III) onto clay minerals under saline conditions: batch adsorption, laser-fluorescence spectroscopy and modeling. Geochim Cosmochim Acta 151:192–202

    Article  CAS  Google Scholar 

  7. Li MX, Sun YB, Liu HB, Chen TH, Hayat T, Alabadi NS, Chen CL (2017) Spectroscopic and modeling investigation of Eu(III)/U(VI) sorption on nanomagnetite from aqueous solutions. ACS Sustain Chem Eng 5:5493–5502

    Article  CAS  Google Scholar 

  8. Sun YB, Chen CL, Tan XL, Shao DD, Li JX, Zhao GX, Yang SB, Wang Q, Wang XK (2012) Enhanced adsorption of Eu(III) on mesoporous Al2O3/expanded graphite composites investigated by macroscopic and microscopic techniques. Dalton Trans 41:13388–13394

    Article  CAS  PubMed  Google Scholar 

  9. Rabung T, Geckeis H, Kim JI, Beck HP (1998) Sorption of Eu(III) on a natural hematite: application of a surface complexation model. J Colloid Interface Sci 208:153–161

    Article  CAS  PubMed  Google Scholar 

  10. Estes SL, Arai Y, Becker U, Fernando S, Yuan K, Ewing RC, Zhang JM, Shibata T, Powell BA (2013) A self-consistent model describing the thermodynamics of Eu(III) adsorption onto hematite. Geochim Cosmochim Acta 122:430–447

    Article  CAS  Google Scholar 

  11. Sun YB, Shao DD, Chen CL, Yang SB, Wang XK (2013) Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline. Environ Sci Technol 47:9904–9910

    Article  CAS  PubMed  Google Scholar 

  12. Hu BW, Hu QY, Xu D, Chen CG (2017) Macroscopic and microscopic investigation on adsorption of Sr(II) on sericite. J Mol Liq 225:563–568

    Article  CAS  Google Scholar 

  13. Sun YB, Wang Q, Chen CL, Tan XL, Wang XK (2012) Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Environ Sci Technol 46:6020–6027

    Article  CAS  PubMed  Google Scholar 

  14. Xie Y, Helvenston EM, Shuller-Nickles LC, Powell BA (2016) Surface complexation modeling of Eu(III) and U(VI) interactions with graphene oxide. Environ Sci Technol 50:1821–1827

    Article  CAS  PubMed  Google Scholar 

  15. Sun YB, Wu Z-Y, Wang XX, Ding CC, Cheng WC, Yu S-H, Wang XK (2016) Macroscopic and microscopic investigation of U(VI) and Eu(III) adsorption on carbonaceous nanofibers. Environ Sci Technol 50:4459–4467

    Article  CAS  PubMed  Google Scholar 

  16. Wang XX, Yang SB, Shi WQ, Li JX, Hayat T, Wang XK (2015) Different interaction mechanisms of Eu(III) and Am-243(III) with carbon nanotubes studied by batch, spectroscopy technique and theoretical calculation. Environ Sci Technol 49:11721–11728

    Article  CAS  PubMed  Google Scholar 

  17. Liu WJ, Jiang H, Yu HQ (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115:12251–12285

    Article  CAS  PubMed  Google Scholar 

  18. Hu QY, Zhu YL, Hu BW, Lu SH, Sheng GD (2018) Mechanistic insights into sequestration of U(VI) toward magnetic biochar: Batch, XPS and EXAFS techniques. J Environ Sci. https://doi.org/10.1016/j.jes.2018.01.013

    Article  Google Scholar 

  19. Chen B, Chen Z, Lv S (2011) A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour Technol 102:716–723

    Article  CAS  PubMed  Google Scholar 

  20. Devi P, Saroha AK (2014) Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent. Bioresour Technol 169:525–531

    Article  CAS  PubMed  Google Scholar 

  21. Dong CD, Chen CW, Hung CM (2017) Synthesis of magnetic biochar from bamboo biomass to activate persulfate for the removal of polycyclic aromatic hydrocarbons in marine sediments. Bioresour Technol 245:188–195

    Article  CAS  PubMed  Google Scholar 

  22. Jung KW, Choi BH, Jeong TU, Ahn KH (2016) Facile synthesis of magnetic biochar/Fe3O4 nanocomposites using electro-magnetization technique and its application on the removal of acid orange 7 from aqueous media. Bioresour Technol 220:672–676

    Article  CAS  PubMed  Google Scholar 

  23. Devi P, Saroha AK (2015) Simultaneous adsorption and dechlorination of pentachlorophenol from effluent by Ni-ZVI magnetic biochar composites synthesized from paper mill sludge. Chem Eng J 271:195–203

    Article  CAS  Google Scholar 

  24. Han YT, Cao X, Ouyang X, Sohi SP, Chen JW (2016) Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr(VI) from aqueous solution: effects of production conditions and particle size. Chemosphere 145:336–341

    Article  CAS  PubMed  Google Scholar 

  25. Wang SY, Tang YK, Li K, Mo YY, Li HF, Gu ZQ (2014) Combined performance of biochar sorption and magnetic separation processes for treatment of chromium-contained electroplating wastewater. Bioresour Technol 174:67–73

    Article  CAS  PubMed  Google Scholar 

  26. Zhang MM, Liu YG, Li TT, Xu WH, Zheng BH, Tan XF, Wang H, Guo YM, Guo FY, Wang SF (2015) Chitosan modification of magnetic biochar produced from Eichhornia crassipes for enhanced sorption of Cr(VI) from aqueous solution. RSC Adv 5:46955–46964

    Article  CAS  Google Scholar 

  27. Trakal L, Veselska V, Safarik I, Vitkova M, Cihalova S, Komarek M (2016) Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresour Technol 203:318–324

    Article  CAS  PubMed  Google Scholar 

  28. Yan LL, Kong L, Qu Z, Lo L, Shen GQ (2015) Magnetic biochar decorated with ZnS nanocrytals for Pb(II) removal. ACS Sustain Chem Eng 3:125–132

    Article  CAS  Google Scholar 

  29. Yap MW, Mubarak NM, Sahu JN, Abdullah EC (2017) Microwave induced synthesis of magnetic biochar from agricultural biomass for removal of lead and cadmium from wastewater. J Ind Eng Chem 45:287–295

    Article  CAS  Google Scholar 

  30. Wang SS, Gao B, Zimmerman AR, Li YC, Ma L, Harris WG, Migliaccio KW (2015) Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresour Technol 175:391–395

    Article  CAS  PubMed  Google Scholar 

  31. Zhang M, Gao B, Varnoosfaderani S, Hebard A, Yao Y, Inyang M (2013) Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour Technol 130:457–462

    Article  CAS  PubMed  Google Scholar 

  32. Liu SB, Huang BY, Chai LY, Liu YG, Zeng GM, Wang X, Zeng W, Shang MR, Deng JQ, Zhou Z (2017) Enhancement of As(V) adsorption from aqueous solution by a magnetic chitosan/biochar composite. RSC Adv 7:10891–10900

    Article  CAS  Google Scholar 

  33. Hu BW, Hu QY, Xu D, Chen CG (2017) The adsorption of U(VI) on carbonaceous nanofibers: a combined batch, EXAFS and modeling techniques. Sep Purif Technol 175:140–146

    Article  CAS  Google Scholar 

  34. Ding CC, Cheng WC, Sun YB, Wang XK (2015) Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides. J Hazard Mater 295:127–137

    Article  CAS  PubMed  Google Scholar 

  35. Hu BW, Chen GH, Hu J, Huang CC, Sheng J, Sheng GD, Ma JY, Huang YY (2017) Macroscopic and spectroscopic studies of the enhanced scavenging of Cr(VI) and Se(VI) from water by titanate nanotube anchored nanoscale zero-valent iron. J Hazard Mater 336:214–221

    Article  CAS  PubMed  Google Scholar 

  36. Newville M (2001) EXAFS analysis using FEFF and FEFFIT. J Synchrotron Rad 8:96–100

    Article  CAS  Google Scholar 

  37. Hu BW, Ye F, Ren XM, Zhao DL, Sheng GD, Li H, Ma JY, Wang XK, Huang YY (2016) X-ray absorption fine structure study of enhanced sequestration of U(VI) and Se(IV) by montmorillonite decorated zerovalent iron nanoparticles. Environ Sci 3:1460–1472

    CAS  Google Scholar 

  38. Gustafsson JP (2009) A windows version of MINTEQ. http://www.lwr.kth.se/English/ OurSOrware/vminteq/index.htm

  39. Sun YB, Lu SH, Wang XX, Xu C, Li JX, Chen CL, Chen J, Hayat T, Alsaedi A, Alharbi NS, Wang XK (2017) Plasam-facilitated synthesis of amidoxime/carbon nanofiber hybrids for effective enrichment of 238U(VI) and 241Am(III). Environ Sci Technol 51:12274–12282

    Article  CAS  PubMed  Google Scholar 

  40. Qiu MQ, Wang M, Zhao QZ, Hu BW, Zhu YL (2018) XANES and EXAFS investigation of uranium incorporation on nZVI in the presence of phosphate. Chemosphere 201:764–771

    Article  CAS  PubMed  Google Scholar 

  41. Jin ZX, Wang XX, Sun YB, Ai YJ, Wang XK (2015) Adsorption of 4-n-nonylphenol and bisphenol-A on magnetic reduced graphene oxides: a combined experimental and theoretical studies. Environ Sci Technol 49:9168–9175

    Article  CAS  PubMed  Google Scholar 

  42. Liu HB, Li MX, Chen TH, Chen CL, Alharbi NS, Hayat T, Sun YB (2017) New synthesis of nZVI/C composites as an efficient adsorbents for the uptake of U(VI) from aqueous solutions. Environ Sci Technol 51:9227–9234

    Article  CAS  PubMed  Google Scholar 

  43. Ding CC, Cheng WC, Sun YB, Wang XK (2015) Effects of Bacillus subtilis on the reduction of U(VI) by nano-Fe0. Geochim Cosmochim Acta 165:86–107

    Article  CAS  Google Scholar 

  44. Sun YB, Zhang R, Ding CC, Wang XX, Cheng WC, Chen CL, Wang XK (2016) Adsorption of U(VI) on sericite in the presence of Bacillus subtilis: a combined batch, EXAFS and modeling techniques. Geochim Cosmochim Acta 180:51–65

    Article  CAS  Google Scholar 

  45. Hu BW, Qu MQ, Sun YB, Sheng GD, Hu J, Ma JY (2017) Decontamination of Sr(II) adsorption on magnetic polyanaline/graphene oxide composites: evidence from experimental, spectroscopic, and modeling investigation. ACS Sustain Chem Eng 5:6924–6931

    Article  CAS  Google Scholar 

  46. Sheng GD, Yang PJ, Hu QY, Li H, Ren XM, Hu BW, Wang XK, Huang YY (2016) New insights into the primary roles of diatomite in the enhanced sequestration of UO22+ by zerovalent iron nanoparticles: an advanced approach utilizing XPS and EXAFS. Appl Catal B 193:189–197

    Article  CAS  Google Scholar 

  47. Hu BW, Hu QY, Chen CG, Sun YB, Xu D, Sheng GD (2017) New insights into Th(IV) speciation on sepiolite: evidence for EXAFS and modeling investigation. Chem Eng J 322:66–72

    Article  CAS  Google Scholar 

  48. Fan QH, Tan XL, Li JX, Wang XK, Wu WS, Montavon G (2009) Sorption of Eu(III) on attapulgite studied by batch, XPS, and EXAFS techniques. Environ Sci Technol 43:5776–5782

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from Natural Science Foundation of China (21577093) and Science and Technology Project of Shaoxing (2014B70041) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baowei Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Zheng, C., Wu, S. et al. Interaction of Eu(III) on magnetic biochar investigated by batch, spectroscopic and modeling techniques. J Radioanal Nucl Chem 316, 1337–1346 (2018). https://doi.org/10.1007/s10967-018-5839-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5839-8

Keywords

Navigation