Skip to main content

Advertisement

Log in

Arsenic (As) accumulation in different genotypes of indica rice (Oryza sativa L.) and health risk assessment based on inorganic As

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

To reveal differences in arsenic (As) accumulation among indica rice cultivars and assess the human health risks arising from inorganic arsenic (iAs) intake via rice consumption, a total of 320 field indica rice samples and corresponding soil samples were collected from Fujian Province in China. The results showed that available soil As (0.03 to 3.83 mg/kg) showed a statistically significant positive correlation with total soil As (0.10 to 19.45 mg/kg). The inorganic As content in brown rice was between 0.001 and 0.316 mg/kg. Among the cultivars, ten brown rice samples (3.13%) exceeded the maximum contaminant level (MCL) of iAs in food of 0.2 mg/kg in China. The estimated daily intake (EDI) and calculated individual incremental lifetime cancer risk (ILCR) ranged from 0.337 µg/day to 106.60 µg/day and from 8.18 × 10–6 to 2.59 × 10–3, respectively. Surprisingly, the average EDI and the EDIs of 258 (80.63%) brown rice samples were higher than the maximum daily intake (MDI) of 10 µg/day in drinking water as set by the National Research Council. The mean ILCR associated with iAs was 54.3 per 100,000, which exceeds the acceptable upper limit (AUL) of 10 per 100,000 set by the USEPA. Notably, the cultivars Y-Liang-You 1 and Shi-Ji 137 exhibited significantly higher mean ILCRs compared to the AUL and other cultivars, indicating that they pose more serious cancer risks to the local population. Finally, this study demonstrated that the cultivars Yi-Xiang 2292 and Quan-Zhen 10 were the optimal cultivars to mitigate risks associated with iAs to human health from rice consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  • Alfaro, M. R., Ugarte, O. M., Lima, L. H. V., Silva, J. R., da Silva, F. B. V., Lins, S. A. D., & do Nascimento, C. W. A. (2022). Risk assessment of heavy metals in soils and edible parts of vegetables grown on sites contaminated by an abandoned steel plant in Havana. Environmental Geochemistry and Health, 44, 43–56.

    Article  CAS  PubMed  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry). (2010). Toxicological profile information sheet, visited; Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services. Available: http://www.atsdr.cdc.gov/toxpro2.html#p. Accessed 7 December 2010.

  • Bagherifam, S., Brown, T. C., Fellows, C. M., & Naidu, R. (2019). Bioavailability of arsenic and antimony in terrestrial ecosystems: A review. Pedosphere, 29(6), 681–720.

    Article  CAS  Google Scholar 

  • Baig, J. A., Kazi, T. G., Shah, A. Q., Kandhro, G. A., Afridi, H. I., Khan, S., & Kolachi, N. F. (2010). Biosorption studies on powder of stem of Acacianilotica: Removal of arsenic from surface water. Journal of Hazardous Materials, 178, 941–948.

    Article  CAS  PubMed  Google Scholar 

  • Barnet, L. S., Pozebon, D., Dressler, V. L., & Cioato, D. (2021). Method validation for As speciation in rice using LC-ICP-MS and the inorganic arsenic limit for Brazilian rice. Journal of Food Composition and Analysis, 99, 103849.

    Article  CAS  Google Scholar 

  • Begum, M. C., Islam, M. S., Islam, M., Amin, R., Parvez, M. S., & Kabir, A. H. (2016). Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 104, 266–277.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya, S., Sharma, P., Mitra, S., Mallick, I., & Ghosh, A. (2021). Arsenic uptake and bioaccumulation in plants: A review on remediation and socio-economic perspective in Southeast Asia. Environmental Nanotechnology, Monitoring & Management, 15, 100430.

    Article  CAS  Google Scholar 

  • Bienert, G. P., Thorsen, M., Schüssler, M. D., Nilsson, H. R., Wagner, A., Tamás, M. J., & Jahn, T. P. (2008). A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biology, 6, 26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolan, N. S., Makino, T., Kunhikrishnan, A., Kim, P. J., Ishikawa, S., Murakami, M., Naidu, R., & Kirkham, M. B. (2013). Cadmium contamination and its risk management in rice ecosystems. Advances in Agronomy, 119, 183–273.

    Article  CAS  Google Scholar 

  • BQTSF (Bureau of Quality and Technical Supervision of Fujian Province). (2016). Standard for grading heavy-metal pollution of soils for producing agricultural products in Fujian Province. DB35/T 859–2016, Fuzhou, China.

  • Carey, A. M., Scheckel, K. G., Lombi, E., Newville, M., Choi, Y., Norton, G. J., Charnock, J. M., Feldmann, J., Price, A. H., & Meharg, A. A. (2010). Grain unloading of arsenic species in rice. Plant Physiology, 152, 309–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanpiwat, P., & Kim, K. W. (2019). Arsenic health risk assessment related to rice consumption behaviors in adults living in Northern Thailand. Environmental Monitoring and Assessment, 191, 674.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z. W. (2016). Geo-accumulation index and potential ecological risk on soil heavy metals: An evaluation of Case in Fujian. Journal of Subtropical Resources and Environment, 11(4), 37–45. (in Chinese).

    Google Scholar 

  • Chen, Z., Zhu, Y. G., Liu, W. J., & Meharg, A. A. (2005). Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytologist, 165(1), 91–97.

    Article  CAS  PubMed  Google Scholar 

  • Chi, Y., Li, F., Tam, N. F., Liu, C., Ouyang, Y., Qi, X., Li, W. C., & Ye, Z. (2018). Variations in grain cadmium and arsenic concentrations and screening for stable low-accumulating rice cultivars from multi-environment trials. Science of the Total Environment, 643, 1314–1324.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Duan, G., Shao, G., Tang, Z., Chen, H., Wang, B., Tang, Z., Yang, Y., Liu, Y., & Zhao, F. J. (2017). Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars. Rice, 10, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  • FPBS (Fujian Provincial Bureau of Statistics). (2022). Statistical Yearbook of Fujian Province. Fuzhou, China. Available: https://tjj.fujian.gov.cn/tongjinianjian/dz2022/index.htm. Accessed 28 Sept 2022

  • Gersztyn, L., Karczewska, A., & Galka, B. (2013). Influence of pH on the solubility of arsenic in heavily contaminated soils. Environmental Protection and Natural Resources, 3, 7–11.

    Article  Google Scholar 

  • Guo, Y., Huang, M., You, W., Cai, L., Hong, Y., Xiao, Q., Zheng, X., & Lin, R. (2022). Spatial analysis and risk assessment of heavy metal pollution in rice in Fujian Province. China. Frontiers in Environmental Science, 10, 1082340.

    Article  Google Scholar 

  • Honma, T., Ohba, H., Kaneko-Kadokura, A., Makino, T., Nakamura, K., & Katou, H. (2016). Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environmental Science & Technology, 50(8), 4178–4185.

    Article  CAS  ADS  Google Scholar 

  • Hosseinniaee, S., Jafari, M., Tavili, A., Zare, S., & Cappai, G. (2023). Investigating metal pollution in the food chain surrounding a lead-zinc mine (Northwestern Iran); an evaluation of health risks to humans and animals. Environmental Monitoring and Assessment, 195, 946. https://doi.org/10.1007/s10661-023-11551-9

    Article  CAS  PubMed  Google Scholar 

  • Hu, P., & Sheng, Z. (2021). Rice seed industry: Yesterday, today, and tomorrow. [2021-04-21]. Available: http://www.zys.moa.gov.cn/mhsh/202104/t20210422_6366373.htm. Accessed 22 Apr 2021

  • Huang, R. Q., Gao, S. F., Wang, W. L., Staunton, S., & Wang, G. (2006). Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China. Science of the Total Environment, 368(2), 531–541.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Huang, S., Shao, G., Wang, L., Wang, L., & Tang, L. (2019). Distribution and health risk assessment of trace metals in soils in the Golden Triangle of southern Fujian Province, China. International Journal of Environmental Research and Public Health, 16, 97.

    Article  CAS  Google Scholar 

  • IARC (International Agency for Research on Cancer). (2004). Some drinking: Water disinfectants and contaminants, including Arsenic, 84. IARC.

    Google Scholar 

  • Islam, M. D., Ahmed, M. K., Habibullah-Al-Mamun, M., Islam, K. N., Ibrahim, M., & Masunaga, S. (2014). Arsenic and lead in foods: A potential threat to human health in Bangladesh. Food Additives & Contaminants: Part A, 31(12), 1982–1992.

    Article  CAS  Google Scholar 

  • James, B., Zhang, W., Sun, P., Wu, M., Li, H., Khaliq, M. A., James, S., & Wang, G. (2017). Tungsten (W) bioavailability in paddy rice soils and its accumulation in rice (Oryza sativa). International Journal of Environmental Health Research, 27(6), 1–11.

    Article  Google Scholar 

  • JECFA (Joint FAO/WHO Expert Committee on Food Additives). (2011). Safety evaluation of certain contaminants in food. Seventy-second meeting of the Joint FAO/WHO Expert Committee on Food Additives. WHO food additives series: 63; FAO JECFA monographs: 8. FAO, Rome.

  • Joardar, M., Das, A., Chowdhury, N. R., Mridha, D., De, A., Majumdar, K. K., & Roychowdhury, T. (2021). Health effect and risk assessment of the populations exposed to different arsenic levels in drinking water and foodstuffs from four villages in arsenic endemic Gaighata block, West Bengal, India. Environmental Geochemistry and Health, 43, 3027–3053.

    Article  CAS  PubMed  Google Scholar 

  • Kang, Z., Wang, S., Qin, J., Wu, R., & Li, H. (2020). Pollution characteristics and ecological risk assessment of heavy metals in paddy fields of Fujian province, China. Scientific Reports, 10, 12244.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Kuramata, M., Abe, T., Matsumoto, S., & Ishikawa, S. (2011). Arsenic accumulation and speciation in Japanese paddy rice cultivars. Soil Science and Plant Nutrition, 57(2), 248–258.

    Article  CAS  Google Scholar 

  • Lei, M., Tie, B., Zeng, M., Qing, P., Song, Z., Williams, P. N., & Huang, Y. (2013). An arsenic-contaminated field trial to assess the uptake and translocation of arsenic by genotypes of rice. Environmental Geochemistry and Health, 35(3), 379–390.

    Article  CAS  PubMed  Google Scholar 

  • Li, R. Y., Stroud, J. L., Ma, J. F., McGrath, S. P., & Zhao, F. J. (2009). Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environmental Science & Technology, 43(10), 3778–3783.

    Article  CAS  ADS  Google Scholar 

  • Li, P., Feng, X. B., & Qiu, G. L. (2010). Methylmercury exposure and health effects from rice and fish consumption: A review. International Journal of Environmental Research and Public Health, 7(6), 2666–2691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, G., Sun, G. X., Williams, P. N., Nunes, L., & Zhu, Y. G. (2011). Inorganic arsenic in Chinese food and its cancer risk. Environmental International, 37(7), 1219–1225.

    Article  CAS  Google Scholar 

  • Li, G., Zheng, M., & Zhu, Y. G. (2013). Studies on arsenic levels and its health risk of rice collected from Fujian Province. Asian Journal of Ecotoxicology, 8(2), 148–155.

    Google Scholar 

  • Li, X., Xie, K., Yue, B., Gong, Y., Shao, Y., Shang, X., & Wu, Y. (2015). Inorganic arsenic contamination of rice from Chinese major rice-producing areas and exposure assessment in Chinese population. Science China Chemistry, 58(12), 1898–1905.

    Article  CAS  ADS  Google Scholar 

  • Litter, M. I., Armienta, M. A., Villanueva Estrada, R. E., Villaamil Lepori, E. C., & Olmos, V. (2020). Arsenic in Latin America: Part II. In S. Srivastava (Ed.), Arsenic in drinking water and food (pp. 113–182). Springer Singapore.

    Chapter  Google Scholar 

  • Liu, W. J., Zhu, Y. G., & Smith, F. (2005). Effects of iron and manganese plaques on arsenic uptake by rice seedlings (Oryza sativa L.) grown in solution culture supplied with arsenate and arsenite. Plant and Soil, 277, 127–138.

    Article  CAS  Google Scholar 

  • Lu, Y., Adomako, E. E., Solaiman, A. R. M., Islam, M. R., Deacon, C., Williams, P. N., Rahman, G. K. M. M., & Meharg, A. A. (2009). Baseline soil variation is a major factor in arsenic accumulation in Bengal Delta paddy rice. Environmental Science & Technology, 43(6), 1724–1729.

    Article  CAS  ADS  Google Scholar 

  • Lu, Y., Dong, F., Deacon, C., Chen, H., Raab, A., & Meharg, A. A. (2010). Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China. Environmental Pollution, 158(5), 1536–1541.

    Article  CAS  PubMed  Google Scholar 

  • Lü, Q., Xiao, Q., Wang, Y., Wen, H., Han, B., Zheng, X., & Lin, R. (2021). Risk assessment and hotspots identification of heavy metals in rice: A case study in Longyan of Fujian province. China. Chemosphere, 270, 128626.

    Article  PubMed  Google Scholar 

  • Lü, Q., Xiao, Q., Guo, Y., Wang, Y., Cai, L., You, W., Zheng, X., & Lin, R. (2022). Pollution monitoring, risk assessment and target remediation of heavy metals in rice from a five-year investigation in Western Fujian region, China. Journal of Hazardous Materials, 424, 127551.

    Article  PubMed  Google Scholar 

  • Luo, D., Zheng, H., Chen, Y., Wang, G., & Ding, F. (2010). Transfer characteristics of cobalt from soil to crops in the suburban areas of Fujian Province, southeast China. Journal of Environmental Management, 91, 2248–2253.

    Article  CAS  PubMed  Google Scholar 

  • Ma, J. F., Yamaji, N., Mitani, N., Xu, X. Y., Su, Y. H., McGrath, S. P., & Zhao, F. J. (2008). Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences of the United States of America, 105(29), 9931–9935.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: A review. Talanta, 58, 201–235.

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin, M. J., Zarcinas, B. A., Stevens, D. P., & Cook, N. (2000). Soil testing for heavy metals. Communications in Soil Science and Plant Analysis, 31, 1661–1700.

    Article  CAS  Google Scholar 

  • MEEPRC (Ministry of Ecology and Environment of the People’s Republic of China). (2018). Soil environmental quality standard for risk control of soil pollution in agricultural land (trial implementation): GB 15618–2018. China Standard Press.

    Google Scholar 

  • MEEPRC (Ministry of Ecology and Environment of the People’s Republic of China). (2019). Technical guidelines for risk assessment of soil contamination of land for construction: HJ 25.3–2019. Beijing.

  • Meharg, A. A., & Zhao, F. J. (2012). Risk from arsenic in rice grain. Arsenic & rice (pp. 31–50). Springer.

    Chapter  Google Scholar 

  • Meharg, A. A., Williams, P. N., Adomako, E., Lawgali, Y. Y., Deacon, C., Villada, A., Cambel, R. C. J., Sun, G., Zhu, Y. G., Felamann, J., Rabba, A., Zhao, F. J., Islam, R., Hossain, S., & Yanai, J. (2009). Geographical variation in total and inorganic arsenic content of polished (white) rice. Environmental Science & Technology, 43(5), 1612–1617.

    Article  CAS  ADS  Google Scholar 

  • Mei, X. Q., Wong, M. H., Yang, Y., Dong, H. Y., Liu, R. L., & Ye, Z. H. (2012). The effects of radial oxygen loss on arsenic tolerance and uptake in rice and on its rhizosphere. Environmental Pollution, 165, 109–117.

    Article  CAS  PubMed  Google Scholar 

  • Menon, M., Dong, W., Chen, X., Hufton, J., & Rhodes, E. J. (2021). Improved rice cooking approach to maximise arsenic removal while preserving nutrient elements. Science of The Total Environment, 755(Part 2), 143341.

    Article  CAS  PubMed  ADS  Google Scholar 

  • MOA (Ministry of Agriculture of the People’s Republic of China). (2006). Soil Testing-Part 11: Method for determination of soil total arsenic: NY/T 1121.11–2006. Beijing.

  • Modestin, E., Devault, D. A., Baylet, A., Massat, F., & Dolique, F. (2022). Arsenic in Caribbean bivalves in the context of Sargassum beachings: A new risk for seafood consumers. Environmental Monitoring and Assessment, 194, 553.

    Article  CAS  PubMed  Google Scholar 

  • MOH (Ministry of Health of the People’s Republic of China). (2003). Determination of total arsenic and abio-arsenic in foods: GB/T 5009. 11–2003. Beijing, China Standard Press.

  • Mondal, D., & Polya, D. A. (2008). Rice is a major exposure route for arsenic in Chakdaha block, Nadia district, West Bengal, India: A probabilistic risk assessment. Applied Geochemistry, 23(11), 2987–2998.

    Article  CAS  ADS  Google Scholar 

  • NBSC (National Bureau of Statistics of China). (2022). China statistical yearbook. Beijing, China. Available: http://www.stats.gov.cn/sj/ndsj/2022/indexeh.htm. Accessed 15 Feb 2023

  • NHFPC (National Health and Family Planning Commission of China). (2017). National Standards for Pollutants in Food: GB 2762–2017. Beijing.

  • Norton, G. J., Pinson, S. R. M., Alexander, J., Mckay, S., Hasen, H., Duan, G., Islam, M. R., Islam, S., Stroud, J. L., Zhao, F. J., McGrath, S. P., Zhu, Y. G., Lahner, B., Yakubova, E., Guerinot, M. L., Tarpley, L., Eizenga, G. C., Salt, D. E., Meharg, A. A., & Price, A. H. (2012). Variation in grain arsenic assessed in a diverse panel of rice (Oryza sativa) grown in multiple sites. New Phytologist, 193(3), 650–664.

    Article  CAS  PubMed  Google Scholar 

  • NRC (National Research Council). (2001). Arsenic in drinking water-2001 update. National Academy Press.

    Google Scholar 

  • Nunes, M. L., Li, G., Chen, W. Q., Meharg, A. A., O’Connor, P., & Zhu, Y. G. (2022). Embedded health risk from arsenic in globally traded rice. Environmental Science & Technology, 56, 6415–6425.

    Article  CAS  ADS  Google Scholar 

  • Parida, L., & Patel, T. N. (2023). Systemic impact of heavy metals and their role in cancer development: A review. Environmental Monitoring and Assessment, 195, 766.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar, A., & Paul, B. (2016). The global menace of arsenic and its conventional remediation-A critical review. Chemosphere, 158, 37–49.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Sengupta, S., Bhattacharyya, K., Mandal, P., Bhattacharya, P., Halder, S., & Pari, A. (2021). Deficit irrigation and organic amendments can reduce dietary arsenic risk from rice: Introducing machine learning-based prediction models from field data. Agriculture, Ecosystems & Environment, 391, 107516.

    Article  Google Scholar 

  • Seyfferth, A. L., Webb, S. M., Andrews, J. C., & Fendorf, S. (2011). Defining the distribution of arsenic species and plant nutrients in rice (Oryza sativa L.) from the root to the grain. Geochimica Et Cosmochimica Acta, 75, 6655–6671.

    Article  CAS  ADS  Google Scholar 

  • SSSC (Soil Science Society of China). (1999). Analysis methods for soil and agricultural chemistry. China Science and Technology Publishing House.

    Google Scholar 

  • Stroud, J. L., Khan, M. A., Norton, G. J., Islam, M. R., Dasgupta, T., Zhu, Y. G., Price, A. H., Meharg, A. A., McGrath, S. P., & Zhao, F. J. (2011). Assessing the labile arsenic pool in contaminated paddy soils by isotopic dilution techniques and simple extractions. Environmental Science & Technology, 45(10), 4262–4269.

    Article  CAS  ADS  Google Scholar 

  • Suriyagoda, L. D. B., Dittert, K., & Lambers, H. (2018a). Arsenic in rice soils and potential agronomic mitigation strategies to reduce arsenic bioavailability: A review. Pedosphere, 28(3), 363–382.

    Article  Google Scholar 

  • Suriyagoda, L. D. B., Dittert, K., & Lambers, H. (2018b). Mechanism of arsenic uptake, translocation and plant resistance to accumulate arsenic in rice grains. Agriculture, Ecosystems and Environment, 253, 23–37.

    Article  CAS  Google Scholar 

  • Suyanto, Lioe, H. M., Giriwono, P. E., & Fardiaz, D. (2021). Total arsenic in complementary food and its exposure assessment for children aged 6–24 months. Food Control, 122, 1–11.

    Article  Google Scholar 

  • Tsuji, J. S., Yost, L. J., Barraj, L. M., Scrafford, C. G., & Mink, P. J. (2007). Use of background inorganic arsenic exposures to provide perspective on risk assessment results. Regulatory Toxicology and Pharmacology, 48(1), 59–68.

    Article  CAS  PubMed  Google Scholar 

  • USEPA (United States Environmental Protection Agency). (2010). Toxicological review of inorganic arsenic. Draft document: EPA/635/R-10/001. USEPA.

  • Wang, F., & Xue, G. X. (2005). Analysis of production region of indica rice in China. Hybrid Rice, 20(3), 9–13.

    CAS  Google Scholar 

  • Wang, G., Su, M., Chen, Y., Lin, F., Luo, D., & Gao, S. (2006). Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China. Environmental Pollution, 144(1), 127–135.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Lv, K., Shi, C., Li, Y., Chen, X., Cheng, J., Fang, X., & Yu, X. (2020). Variation in As accumulation and translocation among 74 main rice cultivars in Jiangsu Province, China. Environmental Science and Pollution Research, 27, 26249–26261.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Zhu, S., Xu, J., Huang, T., & Huang, J. (2022). Spatial distribution and potential ecological risk of metal(loid)s in cultivated land from Xianjia Town in Fujian. Southeast China. Environmental Monitoring and Assessment, 194, 763.

    Article  CAS  PubMed  Google Scholar 

  • Warke, M., Sarkar, D., Zhang, Z., Neve, S., & Datta, R. (2023). Human health risk mitigation from arsenic in rice by crop rotation with a hyperaccumulator plant. Environmental Science and Pollution Research, 30, 12030–12040.

    Article  CAS  PubMed  Google Scholar 

  • Wu, C., Ye, Z., Shu, W., Zhu, Y. G., & Wong, M. (2011). Arsenic accumulation and speciation in rice are affected by root aeration and variation of genotypes. Journal of Experimental Botany, 62(8), 2889–2898.

    Article  CAS  PubMed  Google Scholar 

  • Xie, W., Che, L., Zhou, G., Yang, L., & Hu, M. (2016). The bioconcentration ability of heavy metal research for 50 kinds of rice under the same test conditions. Environmental Monitoring and Assessment, 188, 675.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, J., Zhang, Q., Wang, S., Nan, Z., Long, S., Wu, Y., & Dong, S. (2023). Bioavailability, transfer, toxicological effects, and contamination assessment of arsenic and mercury in soil-corn systems. Environmental Science and Pollution Research, 30, 10063–10078.

    Article  CAS  PubMed  Google Scholar 

  • Zanor, G. A., García, M. G., Venegas-Aguilera, L. E., Saldaña-Robles, A., Saldaña-Robles, N., Martínez-Jaime, O. A., Segoviano-Garfias, J. J. N., & Ramírez-Santoyo, L. F. (2019). Sources and distribution of arsenic in agricultural soils of Central Mexico. Journal of Soils and Sediments, 19, 2795–2808.

    Article  CAS  Google Scholar 

  • Zhao, F. J., & Wang, P. (2020). Arsenic and cadmium accumulation in rice and mitigation strategies. Plant and Soil, 446, 1–21.

    Article  CAS  Google Scholar 

  • Zhao, F. J., Mcgrath, S. P., & Meharg, A. A. (2010). Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies. Annual Review of Plant Biology, 61(1), 535–559.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, F. J., Zhu, Y. G., & Meharg, A. A. (2013). Methylated arsenic species in rice: Geographical variation, origin, and uptake mechanisms. Environmental Science & Technology, 47(9), 3957–3966.

    Article  CAS  ADS  Google Scholar 

  • Zheng, R. L., Sun, G. X., & Zhu, Y. G. (2013). Effects of microbial processes on the fate of arsenic in paddy soil. Chinese Science Bulletin, 58(2), 186–193.

    Article  CAS  ADS  Google Scholar 

  • Zhong, S., Yin, G., Chen, Z., Lin, Q., Huang, R., Liu, D., Peng, H., Huang, L., Wang, X., & Jiang, X. (2017). Influencing mechanism of Eh, pH and iron on the release of arsenic in paddy soil. Environmental Science, 38(6), 530–2537.

    Google Scholar 

  • Zhou, Z., Kang, Y., Li, H., Cao, S., Xu, J., Duan, X., Yang, G., & Shao, K. (2020). Estimating inorganic arsenic exposure from rice intake in Chinese Urban Population. Environmental Pollution, 263, 114397.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, N., A, S., Zhou, L., Feng, T., Huang, Z., Zhang, Q., Zhang, R., & Ma, P. (2022). Effects of planting density on yield of hybrid rice. Journal of Natural Science of Hunan Normal University, 45(6), 99–107 (in Chinese).

Download references

Funding

This work was financially supported by the Natural Science Foundation of Fujian Province (2021J011115, 2023J011026), the Department of Education, Fujian Province (JAT200636/B202027, JAT200640/B202031), and the Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and Utilization Fund (ZD1803).

Author information

Authors and Affiliations

Authors

Contributions

Chunle Chen: Data collection, analysis, methodology, writing. Tian Tian: Data collection, analysis, writing, and formal analysis. Bo Xu and Hongyan Wu: methodology and sample analysis. Yanhang Yu and Guo Wang: reviewing the writing of the draft manuscript. Yanhui Chen: project administration, validation, and supervision.

Corresponding author

Correspondence to Yanhui Chen.

Ethics declarations

Ethics approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors, and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 21536 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Yu, Y., Tian, T. et al. Arsenic (As) accumulation in different genotypes of indica rice (Oryza sativa L.) and health risk assessment based on inorganic As. Environ Monit Assess 196, 310 (2024). https://doi.org/10.1007/s10661-024-12470-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12470-z

Keywords

Navigation