Skip to main content
Log in

Risk assessment of heavy metals in soils and edible parts of vegetables grown on sites contaminated by an abandoned steel plant in Havana

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Food production in areas contaminated by industrial wastes poses a serious risk to farmers and consumers. Here, we evaluate Cd, Cr, Ni, and Pb concentrations in the soils and the edible parts of lettuce, chives, tomatoes, pepper, and cassava plants grown by small farmers in areas contaminated by slag from an abandoned steel plant in Havana, Cuba. The total, environmentally available, and bioavailable concentrations of metals in the soils and the metals bioconcentration factor in the plants were determined. The risks to human health from food and soil ingestion were estimated. The total and environmentally available concentrations of Cd, Cr, and Pb were above values considered safe by international standards, with likely adverse effect on human health. Cadmium was the most bioavailable metal, reflected in the highest accumulation in the crops' edible parts. Even with negligible DTPA-available Cr concentrations in soils, the Cr concentrations in edible parts of the crops exceeded regulatory levels, suggesting that rhizosphere mechanisms may increase Cr availability. The consumption of vegetables represented 70% of the daily intake dose for Cr, Cd, and Ni, while accidental ingestion of contaminated soil is the predominant human exposure route for Pb. Our results demonstrated the health risks associated with cultivating and consuming vegetables grown on metal contaminated soils in Havana and can assist public policies capable of guaranteeing the sustainability of urban agriculture and food security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilar, Y., Calero, B., Rodriguez, D., & Muniz, O. (2015). Cuba’s polygon program — Agricultural land rehabilitation. Current Opinion in Environmental Sustainability, 15, 72–78.

    Google Scholar 

  • Ahmed, F., Hossain, M., Abdullah, A. T., Akbor, M., & Ahsan, M. (2016). Public health risk assessment of chromium intake from vegetable grown in the wastewater irrigated site in Bangladesh. Pollution, 2, 425–432.

    Google Scholar 

  • Alexakis, D., Gamvroula, D., & Theofili, E. (2019). Environmental availability of potentially toxic elements in an agricultural mediterranean site. Environmental and Engineering Geoscience, 25, 169–178.

    Google Scholar 

  • Alfaro, M. R., Montero, A., Ugarte, O. M., Nascimento, C. W. A., Accioly, A. M. A., Biondi, C. M., et al. (2015). Background concentrations and reference values for heavy metals in soils of Cuba. Environmental Monitoring and Assessment, 187, 4198–4208.

    Google Scholar 

  • Alfaro, M. R., Nascimento, C. W. A., Ugarte, O. M., Alvarez, A. M., Accioly, A. M. A., Martin, B. C., et al. (2017). First national-wide survey of trace elements in Cuban urban agriculture. Agronomy for Sustainable Development. https://doi.org/10.1007/s13593-017-0437-7

    Article  Google Scholar 

  • Alsaleh, K. A. M., Meuser, H., Usman, A. R. A., Al-Wabel, M. I., & Al-Farraj, A. S. (2018). A comparison of two digestion methods for assessing heavy metals level in urban soils influenced by mining and industrial activities. Journal of Environmental Management, 206, 731–739.

    CAS  Google Scholar 

  • Alvarez, J. R. E., Montero, A. A., Jimenéz, N. H., Muñiz, U. O., Padilla, A. R., & Molina, R. J. (2001). Nuclear and related analytical methods applied to the determination Cr, Ni, Cu, Zn, Cd and Pb in a red ferralitic soil and Sorghum samples. Journal of Radioanalytical and Nuclear Chemistry, 247, 479–486.

    CAS  Google Scholar 

  • Antoniadis, V., Golia, E. E., Liu, Y., Wang, S., Shaheen, S. M., & Rinklebe, J. (2019). Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos, Greece. Environmental International, 124, 79–88.

    CAS  Google Scholar 

  • Asgher, M., Khan, M. I. R., Anjum, N. A., & Khan, N. A. (2015). Minimising toxicity of cadmium in plants—Role of plant growth regulators. Protoplasma, 252, 399–413.

    CAS  Google Scholar 

  • Ashraf, U., Mahmood, M. H., Hussain, S., Abbas, F., Anjum, S. A., & Tang, X. (2020). Lead (Pb) distribution and accumulation in different plant parts and its associations with grain Pb contents in fragrant rice. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.126003

    Article  Google Scholar 

  • ATSDR - Toxicological Profile for Cadmium U.S. Department of Health and Human. (2012). Toxicological profile for Cadmium. In U.S. Department of Health and Human Services - Public Health Service (Ed.). Agency for Toxic Substances and Disease Registry.

  • Bi, X., Feng, X., Yang, Y., Li, X., Shin, G. P. Y., Li, F., et al. (2009). Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions. Environmental Pollution, 157, 834–839.

    CAS  Google Scholar 

  • Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., et al. (1997). Enhanced accumulation of Pb in Indian Mustard by soil-applied chelating agents. Environmental Science and Technology, 31, 860–865.

    Google Scholar 

  • Boente, C., Matanzas, N., García-González, N., Rodríguez-Valdés, E., & Gallego, J. R. (2017). Trace elements of concern affecting urban agriculture in industrialized areas: A multivariate approach. Chemosphere, 183, 546–556.

    CAS  Google Scholar 

  • Cai, L., Wang, Q., Luo, J., Chen, L., Zhu, R., Whang, S., et al. (2019). Heavy metal contamination and health risk assessment for children near a large Cu-smelter in central China. Science of the Total Environment, 650, 725–733.

    CAS  Google Scholar 

  • Christou, A., Aguera, A., Bayona, J. M., Cytryn, E., Fotopoulos, V., Lambropoulou, D. A., et al. (2017). The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes - A review. Water Research, 123, 448–467.

    CAS  Google Scholar 

  • CONAMA - Conselho Nacional do Meio Ambiente (2009). Resolução n° 420/2009. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620

  • Dala-Paula, B. M., Custódio, F. B., Knupp, E. A. N., Palmieri, H. E. L., Silva, J. B. B., & Glória, M. B. A. (2018). Cadmium, copper and lead levels in different cultivars of lettuce and soil from urban agriculture. Environmental Pollution, 242, 383–389.

    CAS  Google Scholar 

  • Ertani, A., Mietto, A., Borin, M., & Nardi, S. (2017). Chromium in agricultural soils and crops: A review. Water, Air, & Soil Pollution, 228, 1–12.

    CAS  Google Scholar 

  • Fan, Y., Li, H., Xue, Z., Zhang, Q., & Cheng, F. (2017). Accumulation characteristics and potential risk of heavy metals in soil-vegetable system under greenhouse cultivation condition in Northern China. Ecological Engineering, 102, 367–373.

    Google Scholar 

  • FAO/WHO. (2001). Joint FAO/WHO Food standards Programme. http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX_711-33%252FAl0112ae.pdf

  • Feng, W., Guo, Z., Xiao, X., Peng, C., Shi, L., & Ran, H. (2019). Atmospheric deposition as a source of cadmium and lead to soil-rice system and associated risk assessment. Ecotoxicology and Environmental Safety, 180, 160–167.

    CAS  Google Scholar 

  • Figueiredo, C. C., Chagas, J. K. M., Silva, J., & Paz-Ferreiro, J. (2019). Short-term effects of a sewage sludge biochar amendment on total and available heavy metal content of a tropical soil. Geoderma, 344, 31–39.

    CAS  Google Scholar 

  • Fisher, L. V., & Barron, A. R. (2019). The recycling and reuse of steelmaking slags — A review. Resources, Conservation & Recycling, 146, 244–255.

    Google Scholar 

  • Gattullo, C. E., Allegretta, I., Porfido, C., Rascio, I., Spagnuolo, M., & Terzano, R. (2020). Assessing chromium pollution and natural stabilization processes in agricultural soils by bulk and micro X-ray analyses. Environmental Science and Pollution Research, 27, 1–13.

    Google Scholar 

  • Golovatyj, S. E., Bogatyreva, E. N., Golovatyi, S. E. (1999). Effect of levels of Cr content in a soil on its distribution in organs of corn plants. Soil Research and use of Fertilizers, 197–204.

  • Guo, J., Bao, Y., & Wang, M. (2018). Steel slag in China: Treatment, recycling, and management. Waste Management, 78, 318–330.

    Google Scholar 

  • Harada, Y., Whitlow, T. H., Russell-Anelli, J., Walter, M. T., Bassuk, N. L., & Rutzke, M. A. (2019). The heavy metal budget of an urban rooftop farm. Science of the Total Environment, 660, 115–125.

    CAS  Google Scholar 

  • Hovind, H., Magnusson, B., Krysell, M., Lund, U., Makinen, I. (2011). Internal Quality Control - Handbook for Chemical laboratories. Oslo, OS: Nordic Innovation.

  • Hu, W. Y., Wang, H. F., Dong, L. R., Huang, B., Ole, K. B., & Hans, C. B. H. (2018). Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach. Environmental Pollution, 237, 650–661.

    CAS  Google Scholar 

  • Huang, Z., Pan, X. D., Wu, P. G., Han, J. L., & Chen, Q. (2018). Heavy metals in vegetables and the health risk to population in Zhejiang, China. Food Control, 36, 248–252.

    Google Scholar 

  • Jiang, G., Adebayo, A., Jia, J., Xing, Y., Deng, S., & Guo, L. (2019). Impacts of heavy metals and soil proprieties at a Nigerian e-waste site on soil microbial community. Journal of Hazardous Materials, 362, 187–195.

    CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). CRC Press.

    Google Scholar 

  • Kasemodel, M. C., Sakamoto, I. K., Varesche, M. B. A., & Rodrigues, V. G. S. (2019). Potentially toxic metal contamination and microbial community analysis in an abandoned Pb and Zn mining waste deposit. Science of the Total Environment, 675, 367–379.

    CAS  Google Scholar 

  • Kolahi, M., Kazemi, E. M., Yazdi, M., & Barnaby, A. (2020). Oxidative stress induced by cadmium in lettuce (Lactuca sativa Linn.): Oxidative stress indicators and prediction of their genes. Plant Physiology and Biochemistry, 146, 71–79.

    CAS  Google Scholar 

  • Kramer, U., Talke, I. N., & Hanikenne, M. (2007). Transition metal transport. FEBS Letters, 581, 2263–2272.

    Google Scholar 

  • Kumar, V., Kumar, M., Shrivastava, N., Bisht, S., Sharma, S., & Varma, A. (2016). Interaction among rhizospheric microbes, soil, and plant roots: Influence on micronutrient uptake and bioavailability. Plant, Soil and Microbe. https://doi.org/10.1007/978-3-319-29573-2_8

    Article  Google Scholar 

  • Kumar, V., Parihar, R. D., Sharma, A., Bakshi, P., Sidhu, G. P. S., Bali, A. S., Gyasi-Agyei, Y., & Rodrigo-Comino, J. (2019). Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere, 236, 124364. https://doi.org/10.1016/j.chemosphere.2019.124364

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, 421–428.

    CAS  Google Scholar 

  • Luo, X. S., Ding, J., Xu, B., Wang, Y. J., Li, H. B., & Yu, S. (2012). Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Science of the Total Environment, 424, 88–96.

    CAS  Google Scholar 

  • Marchiol, L., Assolari, S., Sacco, P., & Zerbi, G. (2004). Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environmental Pollution, 132, 21–27.

    CAS  Google Scholar 

  • Margenat, A., Matamoros, V., Diez, S., Canameras, N., Comas, J., & Bayona, J. M. (2019). Occurrence and human health implications of chemical contaminants in vegetables grown in peri-urban agriculture. Environment International, 124, 49–57.

    CAS  Google Scholar 

  • Meyers, D. E. R., Auchterlonie, G. J., Webb, R. I., & Wood, B. (2008). Uptake and localization of lead in the root system of Brassica juncea. Environmental Pollution, 153, 323–332.

    CAS  Google Scholar 

  • Monferran, M. V., & Wunderlin, D. A. (2013). Biochemistry of metals/metalloids toward remediation process. In D. Gupta, F. Corpas, & J. Palma (Eds.), Trace metal stress in plants (pp. 43–72). Springer.

    Google Scholar 

  • NOAA - National Oceanic and Atmospheric Administration (2019). https://www.ncdc.noaa.gov/. Accessed 21 June 2020.

  • Oka, G. A., Thomas, L., & Lavkulich, L. M. (2014). Soil assessment for urban agriculture: A vancouver case study. Journal of Soil Science and Plant Nutrition, 14, 657–669.

    Google Scholar 

  • ONN: Oficina Nacional de Normalización. (2009). NC 32: 2009. Calidad de suelos. Determinación del pH y la conductividad eléctrica en el extracto de saturación. Edición 2 Oficina Nacional de Normalización (p. 11).

  • ONN: Oficina Nacional de Normalización. (2017). NC 51: 2017. Calidad de suelos. Análisis químico – Determinación del porcentaje de materia orgánica. Edición 3 Oficina Nacional de Normalización (p. 11).

  • Oteef, M. D. Y., Fawy, K. F., Abd-Rabboh, H. S. M., & Idris, A. M. (2015). Levels of zinc, copper, cadmium, and lead in fruits and vegetables grown and consumed in Aseer Region, Saudi Arabia. Environmental Monitoring and Assessment, 187, 1–11.

    CAS  Google Scholar 

  • Pan, X., Wu, P., & Jiang, X. (2016). Levels and potential health risk of heavy metals in marketed vegetables in Zhejiang China. Scientific Reports, 6(1), 1–7.

    CAS  Google Scholar 

  • Pasquini, M. W. (2006). The use of town refuse ash in urban agriculture around Jos, Nigeria: Health and environmental risks. Science of the Total Environment, 354, 43–59.

    CAS  Google Scholar 

  • Pelfrêne, A., Sahmer, K., Waterlot, C., & Douay, F. (2019). From environmental data acquisition to assessment of gardeners’ exposure: Feedback in an urban context highly contaminated with metals. Environmental Science and Pollution Research, 26, 107–120.

    Google Scholar 

  • Pelfrêne, A., Waterlot, C., Mazzuca, M., Nisse, C., Bidar, G., & Douay, F. (2011). Assessing Cd, Pb, Zn human bioaccessibility in smelter-contaminated agricultural topsoils (northern France). Environmental Geochemistry and Health, 33, 477–493.

    Google Scholar 

  • Pii, Y., Mimmo, T., Tomasi, N., Terzano, R., Cesco, S., & Crecchio, C. (2015). Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biology and Fertility of Soils, 51, 403–415.

    CAS  Google Scholar 

  • Qing, X., Yutong, Z., & Shenggao, L. (2015). Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicology and Environmental Safety, 120, 377–385.

    CAS  Google Scholar 

  • Saljnikov, E., Mrvić, V., Čakmak, D., Jaramaz, D., Perović, V., Antić-Mladenović, S., & Pavlović, P. (2019). Pollution indices and sources appointment of heavy metal pollution of agricultural soils near the thermal power plant. Environmental Geochemistry and Health, 41, 2265–2279.

    CAS  Google Scholar 

  • Shaheen, S. M., Know, E. E., Biswas, J. K., Tack, F. M. G., Ok, Y. S., & Rinklebe, J. (2017). Arsenic, chromium, molybdenum, and selenium: Geochemical fractions and potential mobilization in riverine soil profiles originating from Germany and Egypt. Chemosphere, 180, 553–563.

    CAS  Google Scholar 

  • Sharma, A., & Nagpal, A. K. (2019). Contamination of vegetables with heavy metals across the globe: Hampering food security goal. Journal of Food Science and Technology, 57, 391–403.

    Google Scholar 

  • Sidhu, G. P. S., Bali, A. S., Singh, H. P., Batish, D. R., & Kohli, R. K. (2020). Insights into the tolerance and phytoremediation potential of Coronopus didymus L.(Sm) grown under zinc stress. Chemosphere, 244, 125350. https://doi.org/10.1016/j.chemosphere.2019.125350

    Article  CAS  Google Scholar 

  • Sidhu, G. P. S., Bali, A. S., Singh, H. P., Batish, D. R., & Kohli, R. K. (2018). Ethylenediamine disuccinic acid enhanced phytoextraction of nickel from contaminated soils using Coronopus didymus (L.) Sm. Chemosphere, 205, 234–243. https://doi.org/10.1016/j.chemosphere.2018.04.106

    Article  CAS  Google Scholar 

  • Sidhu, G. P. S., Singh, H. P., Batish, D. R., & Kohli, R. K. (2017). Appraising the role of environment friendly chelants in alleviating lead by Coronopus didymus from Pb-contaminated soils. Chemosphere, 182, 129–136. https://doi.org/10.1016/j.chemosphere.2017.05.026

    Article  CAS  Google Scholar 

  • Silva, F. B. V., Nascimento, C. W. A., Araújo, P. R. M., Silva, F. L., & Lima, L. H. V. (2017a). Soil contamination by metals with high ecological risk in urban and rural areas. International Journal of Environmental Science and Technology, 14, 553–562.

    Google Scholar 

  • Silva, F. B. V., Nascimento, C. W. A., Araújo, P. R. M., Silva, L. H. V., & Silva, R. F. (2016). Assessing heavy metals sources in sugarcane Brazilian soils: An approach using multivariate analysis. Environmental Monitoring and Assessment, 188, 1–12.

    CAS  Google Scholar 

  • Silva, W. R., Silva, F. B. V., Araújo, P. R. M., & Nascimento, C. W. A. (2017b). Assessing human health risks and strategies for phytoremediation in soils contaminated with As, Cd, Pb, and Zn by slag disposal. Ecotoxicology and Environmental Safety, 144, 522–530.

    Google Scholar 

  • Skerfving, S., Lofmark, L., Lundh, T., Mikoczy, Z., & Stromberg, U. (2015). Late effects of low blood lead concentrations in children on school performance and cognitive functions. Neurotoxicology, 49, 114–120.

    CAS  Google Scholar 

  • Srivastava, S., Srivastava, S., Prakash, S., & Srivastava, M. M. (1998). Fate of trivalent chromium in presence of organic acids. Chemical Speciation and Bioavailability, 10, 147–150.

    CAS  Google Scholar 

  • Sun, G., Feng, X., Yin, R., Zhao, H., Zhang, L., Sommar, J., Li, Z., & Zhang, H. (2019). Corn (Zea mays L.): A low methylmercury staple cereal source and an important biospheric sink of atmospheric mercury, and health risk assessment. Environment International. https://doi.org/10.1016/j.envint.2019.104971

    Article  Google Scholar 

  • Swartjes, F. A., Versluijs, K. W., & Otte, P. F. (2013). A tiered approach for the human health risk assessment for consumption of vegetables from with cadmium-contaminated land in urban areas. Environmental Research, 126, 223–231.

    CAS  Google Scholar 

  • USEPA - United States Environmental Protection Agency (1989). Risk assessment guidance for superfund, Vol. 1: Human health evaluation manual. EPA/540/1–89/002. https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part. Accessed 14 May 2020.

  • USEPA - United States Environmental Protection Agency (1996). Method 3050B: Acid digestion of sediments sludges and soils. Available at: https://www.epa.gov/sites/production/files/2015-06/documents/epa-3050b.pdf. Accessed 14 May 2020.

  • USEPA - United States Environmental Protection Agency (2000). Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=20533. Accessed 14 May 2020.

  • USEPA - United States Environmental Protection Agency (2001). Risk assessment guidance for superfund: Volume III–Part A, process for conducting probabilistic risk assessment. https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-volume-iii-part. Accessed 14 May 2020.

  • USEPA - United States Environmental Protection Agency (2007). Method 3051A: Microwave assisted acid digestion of sediments, sludges, soils, and oils. Available at: https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf. Accessed 14 May 2020.

  • USEPA - United States Environmental Protection Agency (2013). Reference dose (RfD): Description and use in health risk assessments, background document 1A, integrated risk information system (IRIS). http://www.epa.gov/iris/rfd.html. Accessed 21 May 2020.

  • Vareda, J. P., Valente, A. J. M., & Durães, L. (2019). Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of Environmental Management, 246, 101–118.

    CAS  Google Scholar 

  • Vigneri, R., Malandrino, P., Giani, F., Russo, M., & Vigneri, P. (2017). Heavy metals in the volcanic environment and thyroid cancer. Molecular and Cellular Endocrinology, 457, 73–80.

    CAS  Google Scholar 

  • Vithanage, M., Kumarathilaka, P., Oze, C., Karunatilake, S., Seneviratne, M., Hseu, Z., et al. (2019). Occurrence and cycling of trace elements in ultramafic soils and their impacts on human health: A critical review. Environment International. https://doi.org/10.1016/j.envint.2019.104974

    Article  Google Scholar 

  • WBG - World Bank Group (2020). Life expectancy at birth. http://datatopics.worldbank.org/world-development%20indicators/themes/people.html#population. Accessed 18 August 2020.

  • Wei, X., Zhou, Y., Jiang, Y., Tsang, D. C. W., Zhang, C., Liu, J., et al. (2020). Health risks of metal(loid)s in maize (Zea mays L.) in an artisanal zinc smelting zone and source fingerprinting by lead isotope. Science of the Total Environment, 742, 1–10.

    Google Scholar 

  • WHO - World Health Organization (1996). Permissible limits of heavy metals in soil and plants. WHO guidelines for assessing quality of herbal medicines with reference to contaminants and residues. https://www.omicsonline.org/articles-images/2161-0525-5-334-t011.html. Accessed 1 August 2020.

  • Zhang, X., Wei, S., Sun, Q., Wadood, S. A., & Guo, B. (2018). Source identification and spatial distribution of arsenic and heavy metals in agricultural soils around Hunan industrial estate by positive matrix factorization model, principle components analysis and geo statistical analysis. Ecotoxicology and Environmental Safety, 159, 354–362.

    CAS  Google Scholar 

  • Zhaoyong, Z., Xiaodong, Y., Simay, Z., & Mohammed, A. (2018). Health risk evaluation of heavy metals in green land soils from urban parks in Urumqi, northwest China. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-017-0737-0

    Article  Google Scholar 

  • Zheng, S., Wang, Q., Yuan, Y., & Sun, W. (2020). Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China. Food Chemistry. https://doi.org/10.1016/j.foodchem.2020.126213

    Article  Google Scholar 

  • Zhou, H., Yang, W., Zhou, X., Liu, L., Gu, J., Wang, W., et al. (2016). Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment. International Journal of Environmental Research and Public Health, 13(3), 289.

    Google Scholar 

  • Zhou, T., Bo, X., Qu, J., Wang, L., Zhou, J., & Li, S. (2019a). Characteristics of PCDD/Fs and metals in surface soil around an iron and steel plant in north China plain. Chemosphere, 216, 413–418.

    CAS  Google Scholar 

  • Zhuang, P., MacBride, M. B., Xia, H., Li, N., & Li, Z. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of the Total Environment, 407, 1551–1561.

    CAS  Google Scholar 

  • Zorrig, W., Cornu, J. W., Maisonneuve, B., Rouached, A., Sarrobert, C., Shahzad, Z., et al. (2019). Genetic analysis of cadmium accumulation in lettuce (Lactuca sativa). Plant Physiology and Biochemistry. https://doi.org/10.1016/j.plaphy.2019.01.011

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally for the conception and writing of the manuscript. All authors critically revised the manuscript and approved of the final version.

Corresponding author

Correspondence to Clístenes Williams Araújo do Nascimento.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfaro, M.R., Ugarte, O.M., Lima, L.H.V. et al. Risk assessment of heavy metals in soils and edible parts of vegetables grown on sites contaminated by an abandoned steel plant in Havana. Environ Geochem Health 44, 43–56 (2022). https://doi.org/10.1007/s10653-021-01092-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01092-w

Keywords

Navigation