Skip to main content
Log in

Exploring spatiotemporal dynamics of flower visitor association pattern on two Avicennia mangroves: a network approach

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Plant-flower visitor interaction is one of the most important relationships regarding the co-existence of the floral and faunal communities. The implication of network approaches is an efficient way to understand the impact of community structure on ecosystem functionality. To understand the association pattern of flower visitors, we performed this study on Avicennia officinalis and Avicennia marina mangroves from the islands of Indian Sundarban over three consecutive years. We found that visiting time and sites (islands) influenced the abundance of visitors. The bipartite networks showed a significant generalized structure for both site-visitor and visiting time-visitor networks where the strength and specialization of visitor species showed a highly and moderately significant positive correlation between both networks respectively. All the site-wise visiting time-visitor networks and year-wise site-visitor networks were significantly modular in structure. For both the plants, most of the visitors showed a generalized association pattern among islands and also among visiting times. Additionally, the study of the foraging behavior of dominant visitors showed Apis dorsata and Apis mellifera as the potential visitors for these plants. Our results showed that flower visitor networks are spatiotemporally dynamic. The interactions of visitors with flowers at different times influence their contribution to the network for becoming a generalist or peripheral species in the context of their visiting time, which may subsequently change over islands. This approach will help to devise more precise plant species-specific conservation strategies by understanding the contribution of visitors through the spatiotemporal context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the data except GLMM dataset are available in Zenodo (https://doi.org/10.5281/zenodo.7612548). The data for GLMM analysis and foraging behavior will be provided on request to the first or corresponding author.

Code availability

All the codes are available in Zenodo (https://doi.org/10.5281/zenodo.7612548).

References

  • Akter, A., Biella, P., Batary, P., & Klecka, J. (2020). Changing pollinator communities along a disturbance gradient in the Sundarbans mangrove forest: A case study on Acanthus ilicifolius and Avicennia officinalis. Global Ecology and Conservation, 24, e01282.

    Article  Google Scholar 

  • Albano, S., Salvado, E., Borges, P. A. V., & Mexia, A. (2009). Floral visitors, their frequency, activity rate and index of visitation rate in the strawberry fields of Ribatejo, Portugal: Selection of potential pollinators. Part 1. Advances in Horticultural Sciences, 23, 238–245.

    Google Scholar 

  • Alongi, D. M. (2002). Present state and future of the world’s mangrove forests. Environment Conservation, 29, 331–349.

    Article  Google Scholar 

  • Bakshi, M., Ghosh, S., Chakraborty, D., Hazra, S., & Chaudhuri, P. (2018). Assessment of potentially toxic metal (PTM) pollution in mangrove habitats using biochemical markers: A case study on Avicennia officinalis L. in and around Sundarban, India. Marine Pollution Bulletin, 133, 157–172.

    Article  CAS  Google Scholar 

  • Barzoki, Z. E., Ebrahimi, M., & Sadeghi, S. (2019). Odonata diversity and species associations in Northwest Central Plateau of Iran. Journal of Insect Conservation. https://doi.org/10.1007/s10841-019-00211-4

    Article  Google Scholar 

  • Bascompte, J., Jordano, P., & MeliánOlesen, C. J. J. M. (2003). The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America, 100, 9383–9387. https://doi.org/10.1073/pnas.1633576100. PMID: 12881488.

    Article  CAS  Google Scholar 

  • Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  • Bhowmik, A. K., Padmanaban, R., Cabral, P., & Romeiras, M. M. (2022). Global mangrove deforestation and its interacting social-ecological drivers: A systematic review and synthesis. Sustainability, 14, 4433. https://doi.org/10.3390/su14084433

    Article  Google Scholar 

  • BSI ENVIS. http://www.bsienvis.nic.in/Database/IndianMangroves_3941.aspx. Accessed 18 Feb 2022.

  • Chakrabarty, K. (1985). Sundarbans (India) honey and mangrove swamps. Journal of the Bombay Natural History Society, 84(1), 133–137.

    Google Scholar 

  • Chakraborti, U., Mitra, B., & Bhadra, K. (2019). Diversity and ecological role of insect flower visitors in the pollination of mangroves from the Indian Sundarbans. Current Science, 117(6), 1060–1070.

    Article  Google Scholar 

  • Chakraborti, U., Mitra, B., & Bhadra, K. (2021). Island based association pattern and foraging profile of insect flower visitors on Aegialitis rotundifolia —A near threatened mangrove plant from Indian Sundarban. Neotropical Entomology. https://doi.org/10.1007/s13744-021-00911-0

    Article  Google Scholar 

  • Chakraborty, P., Chatterjee, S., Smith, B. M., & Basu, P. (2021). Seasonal dynamics of plant pollinator networks in agricultural landscapes: How important is connector species identity in the network? Oecologia, 196, 825–837.

    Article  Google Scholar 

  • Corbet, S. A. (1978). Bee visits and the nectar of Echium vulgare L. and Sinapis alba L. Ecological Entomology, 3, 25–37.

    Article  Google Scholar 

  • Delignette-Muller, M. L., & Dutang, C. (2015). fitdistrplus: An R package for fitting distributions. Journal of Statistical Software64(4), 1–34. https://doi.org/10.18637/jss.v064.i04

  • Dormann, C. F. (2011). How to be a specialist? Quantifying specialization in pollination networks. Network Biology, 1, 1–20.

    Google Scholar 

  • Dormann, C. F., Gruber, B., & Fruend, J. (2008). Introducing the bipartite package: Analysing ecol network. R News, 8(2), 8–11.

    Google Scholar 

  • Dormann, C. F., Fruend, J., Bluethgen, N., & Gruber, B. (2009). Indices, graphs and null models: Analyzing bipartite ecological networks. Open Journal Ecology, 2, 7–24.

    Article  Google Scholar 

  • Duke, N. C. (1991). A systematic revision of the mangrove Genus Avicennia (Avicenniaxeae) in Australasia. Australian Systematic Botany, 4, 299–324.

    Article  Google Scholar 

  • Dupont, Y. L., & Olesen, J. M. (2009). Ecological modules and roles of species in heathland plant-insect flower visitor networks. Journal of Animal Ecology, 78, 346–353.

    Article  Google Scholar 

  • Dupont, Y. L., & Olesen, J. M. (2012). Stability of modular structure in temporal cumulative plant-flower-visitor networks. Ecological Complexity, 11, 84–90.

    Article  Google Scholar 

  • Dupont, Y. L., Padron, B., Olesen, J. M., & Petanidou, T. (2009). Spatio-temporal variation in the structure of pollination networks. Oikos, 118, 1261–1269.

    Article  Google Scholar 

  • Freitas, L., & Sazima, M. (2006). Pollination biology in a tropical high-altitude grassland in Brazil: Interactions at the community level. The Annals of the Missouri Botanical Garden, 93, 465–516.

    Article  Google Scholar 

  • Gamito, S. (2010). Caution is needed when applying Margalef diversity index. Ecological Indicators, 10, 550–551.

    Article  Google Scholar 

  • Gani, M. O. (2001). The giant honeybee (Apis dorsata) and honey hunting in Sundarbans reserved forests of Bangladesh. Apimondia. In: 2001: Proceedings of the 37th International Apicultural Congress, 28 Octobere1 November (Durban).

  • Ghosh, A., Gupta, S., Maity, S., & Das, S. (2008). Study of floral morphology of some Indian mangroves in relation to pollination. Research Journal of Botany, 3, 9–16.

    Article  Google Scholar 

  • Giri, S., Mukhopadhyay, A., Hazra, S., Mukherjee, S., Roy, D., Ghosh, S., Ghosh, T., & Mitra, D. (2014). A study on abundance and distribution of mangrove species in Indian Sundarban using remote sensing technique. Journal of Coastal Conservation., 18, 359–367. https://doi.org/10.1007/s11852-014-0322-3

    Article  Google Scholar 

  • Gómez-Murillo, L., & Cuartas-Hernández, S. E. (2016). Patterns of diversity of flower-visitor associations to the understory Araceae in a tropical mountain forest in Colombia. Journal of Insect Conservation, 20, 1069–1085.

    Article  Google Scholar 

  • Gu, Z., Gu, L., Eils, R., Schlesner, M., & Brors, B. (2014). Circlize implements and enhances circular visualization in R. Bioinformatics, 30, 2811–2812.

    Article  CAS  Google Scholar 

  • Gupta, S., Ghosh, A., Maity, S., & Das, S. (2008). Pollen morphology and viability of some Indian mangrove. Annals of Tropical Research, 30(1), 60–71.

    Article  Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1), 9. http://palaeo-electronica.org/2001_1/past/issue1_01.html

  • Hermansen, T. D., Britton, D. R., Ayre, D. J., & Minchinton, T. E. (2014). Identifying the real pollinators? Exotic honeybees are the dominant flower visitors and only effective pollinators of Avicennia marina in Australian Temperate mangroves. Estuaries and Coasts, 37, 621–635.

    Article  Google Scholar 

  • Herrera, C. M. (1989). Pollinator abundance, morphology, and flower visitation rate: Analysis of the quantity component in a plant pollinator system. Oecologia, 80, 241–248.

    Article  Google Scholar 

  • Hu, L., Dong, Y., & Sun, S. (2019). Relative species abundance successfully predicts Nestedness and interaction frequency of monthly pollination networks in an alpine meadow. PLoS ONE, 14(10), e0224316. https://doi.org/10.1371/0224316

    Article  CAS  Google Scholar 

  • Hung, K. L. J., Kingston, J. M., Albrecht, M., Holway, D. A., & Kohn, J. R. (2017). The worldwide importance of honey bees as pollinators in natural habitats. Proceedings of Royal Society B, Biological Sciences, 285, 20172140. https://doi.org/10.1098/rspb.2017.2140

    Article  Google Scholar 

  • Hung, K. L. J., Kingston, J. M., Lee, A., Holway, D. A., & Kohn, J.R. (2019) Non-native honey bees disproportionately dominate the most abundant floral resources in a biodiversity hotspot. Proceedings of Royal Society B, Biological Sciences, 286, 20182901.

  • Jonathan, J. K., & Kulkarni, P. P. (1986) Manual: Collection, preservation and identification of insects and mites of economic importance. B. K. Tikader (Eds.) Zoological Survey of India.

  • Jost, L. (2006). Entropy and diversity. Okios, 113, 363–375.

    Article  Google Scholar 

  • Kathiresan, K. (2018). Mangrove forests of India. Current Science, 114(5), 976–981.

    Article  Google Scholar 

  • Kathiresan, K., & Bingham, B. L. (2001). Biology of mangroves and mangrove ecosystems. Advances in Marine Biology, 40, 81–251.

    Article  Google Scholar 

  • Kay, K. M., & Schemske, D. W. (2003). Pollinator associations and visitation rates for 11 species of Neotropical costus (Costaceae). Biotropica, 35(2), 198–207.

    Google Scholar 

  • Kehimkar, I. (2008). The book of Indian butterflies. Bombay natural history society.

    Google Scholar 

  • Kishi, S., & Kakutani, T. (2020). Male visitors may decrease modularity in flower–Visitor networks. Frontiers of Ecology and Evolution, 8, 124. https://doi.org/10.3389/fevo.2020.00124

    Article  Google Scholar 

  • Kumar, M. V. S., Bandyopadhyay, U. K., Lalitha, N., & Saratchandra, B. (2017). Biology and feeding efficacy of Micraspis discolor, a potential biological control agent of whitefly Dialeuropora decempuncta. Journal of Entomology and Zoology Studies, 6(1), 938–941.

    Google Scholar 

  • Kunte, K. (2000). Indian- A lifescape butterflies of peninsular India. M. Gadgil (Ed.) Indian Academy of Science, University Press.

  • Layek, U., Kundu, A. B., & S, Karmakar, P. (2021). Impact of managed stingless bee and western honey bee colonies on native pollinators and yeild of watermelon: A comparative study. Annals of Agricultural Sciences, 66(1), 38–45.

    Article  Google Scholar 

  • Lázaro, A., Müller, A., Ebmer, A. W., Dathe, H. H., Scheuchl, E., Schwarz, M., Risch, S., Pauly, A., Devalez, J., Tscheulin, T., Gómez-Martínez, C., Papas, E., Pickering, J., Waser, N. M., & Petanidou, T. (2021). Impacts of beekeeping on wild bee diversity and pollination networks in the Aegean Archipelago. Ecography, 44(9), 1353–1365. https://doi.org/10.1111/ecog.05553

    Article  Google Scholar 

  • Lenth, R. (2019). emmeans: Estimated marginal means, aka least-squares means. R package version 1.4.2. https://CRAN.Rproject.org/package=emmeans

  • Mace, G. M., Norris, K., & Fitter, A. H. (2012). Biodiversity and ecosystem services: A multilayered relationship. Trends in Ecology and Evolution, 27(1), 19–26.

    Article  Google Scholar 

  • Magrach, A., Gonzalez-Varo, J. P., Boiffier, M., Vila, M., & Bartomeus, I. (2017). Honeybee spillover reshuffles pollinator diets and affects plant reproductive success. Nature Ecology and Evolution, 1, 1299.

    Article  Google Scholar 

  • Meerabai, G. (2012). Visitation rate, effectives and efficiency of pollinators to Cadabafruiticosa (Linn.) Druce. Bioscan, 7(3), 483–485.

    CAS  Google Scholar 

  • Mitra, B., Biswas, O., Roy, S., & Chakraborti, U. (2015). Pollinators of mangrove in the perspective of Indian Sundarbans. ENVIS Newsletter Zoological Survey of India, 21, 6–11.

    Google Scholar 

  • Olesen, J. M., Bascompte, J., Dupont, Y. L., & Jordano, P. (2007). The modularity of pollination network. Proceedings of the National Academy of Sciences, 104(50), 19891–19896.

    Article  CAS  Google Scholar 

  • Olito, C., & Fox, J. W. (2014). Species traits and abundances predict metrics of plant-pollinator network structure, but not pairwise interactions. Okios. https://doi.org/10.1111/oik.01439

    Article  Google Scholar 

  • Piazzon, M., Larrinaga, A. R., & Samtamaria, L. (2011). Are nested networks more robust to disturbance? A test using epiphyte-tree, comensalistic networks. PLoS ONE, 6(5), e19637. https://doi.org/10.1371/journal.pone.001963

    Article  CAS  Google Scholar 

  • Purvis, E. E. N., Meehan, M. L., & Lindo, Z. (2019). Agricultural field margins provide food and nesting resources to bumblebees (Bombus spp., Hymenoptera: Apidae) in Southwestern Ontario, Canada. Insect Conservation and Diversity. https://doi.org/10.1111/icad.12381

    Article  Google Scholar 

  • Raju, A. J. S. (1990). Observation on the floral biology of certain mangroves. Proceedings of the Indian National Science Academy., B56(4), 367–374.

    Google Scholar 

  • Raju, A. J. S. (2013). Reproductive ecology of mangrove flora: Conservation and management. Transylvanian Review of Systematical and Ecological Research, 15(2), 133–184.

    Article  Google Scholar 

  • Raju, A. J. S., Subba Rao, P. V., Kumar, R., & Rama Mohan, S. (2012). Pollination biology of the crypto-viviparous Avicennia species (Avicenniaceae). Journal of Threatened Taxa, 4(15), 3377–3389.

    Article  Google Scholar 

  • Roy, S., Chakraborty, S. K., Parui, P., Chakraborti, U., Biswas, O., & Mitra, B. (2016) Redescription of Cadrema pallid Var. Bilineata(de Meijere, 1904) (Diptera:Chloropidae) and its role as pollinator and carrion feeder from Indian Sundarbans. Ambient Science, 3(2), https://doi.org/10.21276/ambi.2016.03.2.nn01

  • RStudio Team. (2020). R-Studio: Integrated development environment for R. RStudio version 1.3.1056, PBC, Boston, MA URL http://www.rstudio.com/

  • Sanderson, C. E., Orozco, B. S., Hill, P. S. M., & Wells, H. (2006). Honeybee (Apis mellifera ligustica) response to differences in handling time, rewards and flower colours. Ethology, 112, 937–946.

    Article  Google Scholar 

  • Sarkar, S. K., Reeve, R., Thompson, J., Paul, N. K., & Matthiopoulos, J. (2016). Are we failing to protect threatened mangrove in the Sundarbans world heritage ecosystem? Scientific Reports. https://doi.org/10.1038/srep21234

    Article  Google Scholar 

  • Saunders, M. E., & Rader, R. (2019). Network modularity influences plant reproduction in a mosaic tropical agroecosystem. Proceedings of Royal Society B, 286, 20190296. https://doi.org/10.1098/rspb.2019.0296

    Article  Google Scholar 

  • Selvam V, Eganathan P, Karunagaran VM, Ravishankar T, Ramasubramanian R (2004) Mangrove plants of Tamil Nadu. M. S. Swaminathan Research Foundation, Chennai

  • Shankar, C., Mohan, M., Sampathkumar, M., Lydia, C. H., & Katti, G. (2012). Functional significance of Micraspis discolor (F.) (Coccinellidae: Coleoptera) in rice ecosystem. Journal Applied Entomology, 137(8), 601–609. https://doi.org/10.1111/jen.12035

    Article  Google Scholar 

  • Sreelekshmi, S., Nandan, S. B., Kaimal, S. V., & Radhakrishnan, C. K. (2020). Mangrove species diversity, strand structure and zonation pattern in relation to environmental factors-A case study at Sundarban delta, east coast of India. Regional Studies in Marine Science. https://doi.org/10.1016/j.rsma.2020.101111

    Article  Google Scholar 

  • Subba Reddi, C., Raju, A. J. S., & Narayana Reddy, S. (1995). Pollination ecology of Avicennia officinalis (Avicennaceae). Journal of Palynology, 31, 253–260.

    Google Scholar 

  • Thatoi, H., Samantaray, D., & Das, S. K. (2016). The genus Avicennia, a pioneer group of dominant mangrove plant species with potential medicinal values: A review. Frontiers in Life Science, 9(4), 267–291. https://doi.org/10.1080/21553769.2016.1235619

    Article  CAS  Google Scholar 

  • Thompson, J. D. (2001). How do visitation patterns vary among pollinators in relation to floral display and floral design in a generalist pollination system? Oecologia, 126, 386–394.

    Article  CAS  Google Scholar 

  • Thomson, J. D., & Plowright, R. C. (1980). Pollen carryover, nectar rewards, and pollinator behaviour with special reference to Diervilla lonicera. Oecologia (Berl.), 46, 68–74.

    Article  Google Scholar 

  • Vinaya, K., & Binoy, C. F. (2022). Foraging activity and breeding system of Avicennia officinalis (Avicenniaceae) in Kerala, India. Journal of Threatened Taxa, 14(11), 22098–22104.

    Article  Google Scholar 

Download references

Acknowledgements

PRG, University of Kalyani and DST-PURSE 2023-24 should be acknowledged for partial financial support, and the authors are also grateful to the people of Sundarban Biosphere Reserve for their support and cooperation.

Funding

The corresponding author, KB, is grateful for financial support to the Department of Science & Technology-Uzbek (INT/UZBEK/P-09), 2021–2024.

Author information

Authors and Affiliations

Authors

Contributions

UC did the field study, designed the research, and analyzed the data. BM designed the research and guided the field study, and KB analyzed, compiled and reviewed the data, and wrote the manuscript.

Corresponding author

Correspondence to Kakali Bhadra.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5560 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborti, U., Mitra, B. & Bhadra, K. Exploring spatiotemporal dynamics of flower visitor association pattern on two Avicennia mangroves: a network approach. Environ Monit Assess 195, 1244 (2023). https://doi.org/10.1007/s10661-023-11845-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11845-y

Keywords

Navigation